> | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
![]() |
(1) |
> | with(algcurves): |
TypeNo.61
> | qc[61]:=(x^2+y^2-x*z)^2-x^2*z^2-y^2*z^2; |
![]() |
(1.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[61]),x,y); |
Warning, the name changecoords has been redefined
|
![]() |
> | singularities(subs(z=1,qc[61]),x,y); |
![]() |
(1.2) |
> | subs(y=t*x+z,qc[61]); |
![]() |
(1.3) |
> | Q61:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(1.4) |
> | subs(U=0,Q61);
simplify(%); |
![]() |
(1.5) |
![]() |
(1.5) |
> | Quartic_to_Weierstrass(Q61,[0,0]); |
![]() ![]() ![]() |
(1.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(1.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() ![]() |
(1.8) |
> | Elliptic_surface(%); |
![]() |
(1.9) |
![]() |
(1.9) |
> | Show_data(); |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
TypeNo.62
> | qc[62]:=(x^3-y^2*z)*y; |
![]() |
(2.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[62]),x,y); |
![]() |
> | singularities(subs(z=1,qc[62]),x,y); |
![]() |
(2.2) |
> | subs(y=t*(x-z),qc[62]); |
![]() |
(2.3) |
> | Q62:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(2.4) |
> | subs(U=1,Q62);
simplify(%); |
![]() |
(2.5) |
![]() |
(2.5) |
> | Quartic_to_Weierstrass(Q62,[1,0]); |
![]() ![]() |
(2.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(2.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(2.8) |
> | Elliptic_surface(%); |
![]() |
(2.9) |
![]() |
(2.9) |
> | Show_data(); |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
TypeNo.63
> | qc[63]:=(y*z-x^2)^2-y^3*x; |
![]() |
(3.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[63]),x,y); |
![]() |
> | singularities(subs(z=1,qc[63]),x,y); |
![]() |
(3.2) |
> | subs(z=t*x,qc[63]); |
![]() |
(3.3) |
> | Q63:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(3.4) |
> | subs(U=0,Q63);
simplify(%); |
![]() |
(3.5) |
![]() |
(3.5) |
> | Quartic_to_Weierstrass(Q63,[0,0]); |
![]() |
(3.6) |
![]() ![]() |
(3.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(3.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(3.9) |
> | Elliptic_surface(%); |
![]() |
(3.10) |
![]() |
(3.10) |
> | Show_data(); |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
![]() |
(3.11) |
TypeNo.64
> | qc[64]:=(x^2-y*z+y^2)*(x^2-y*z-y^2); |
![]() |
(4.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[64]),x,y); |
![]() |
> | singularities(subs(z=1,qc[64]),x,y); |
![]() |
(4.2) |
> | subs(y=t*(x-z),qc[64]); |
![]() |
(4.3) |
> | Q64:=mapfactor(subs({z=1,x=U},%),U); |
![]() ![]() |
(4.4) |
> | subs(U=1,Q64);
simplify(%); |
![]() ![]() |
(4.5) |
![]() |
(4.5) |
> | Quartic_to_Weierstrass(Q64,[1,1]); |
![]() ![]() ![]() ![]() ![]() |
(4.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() ![]() |
(4.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() ![]() |
(4.8) |
> | Elliptic_surface(%); |
![]() |
(4.9) |
![]() |
(4.9) |
> | Show_data(); |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
TypeNo.65
> | qc[65]:=x^4-y^3*z; |
![]() |
(5.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[65]),x,y); |
![]() |
> | singularities(subs(z=1,qc[65]),x,y); |
![]() |
(5.2) |
> | subs(z=t*y,qc[65]); |
![]() |
(5.3) |
> | Q65:=mapfactor(subs({x=1,y=U},%),U); |
![]() |
(5.4) |
> | subs(U=0,Q65);
simplify(%); |
![]() |
(5.5) |
![]() |
(5.5) |
> | Quartic_to_Weierstrass(Q65,[0,1]); |
![]() ![]() |
(5.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(5.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(5.8) |
> | Elliptic_surface(%); |
![]() |
(5.9) |
![]() |
(5.9) |
> | Show_data(); |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
TypeNo.66
> | qc[66]:=(x^2+y^2-x*z)^2-x^2*z^2-y^2*z^2; |
![]() |
(6.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[66]),x,y); |
![]() |
> | singularities(subs(z=1,qc[66]),x,y); |
![]() |
(6.2) |
> | subs(z=t*x,qc[66]); |
![]() |
(6.3) |
> | Q66:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(6.4) |
> | subs(U=0,Q66);
simplify(%); |
![]() |
(6.5) |
![]() |
(6.5) |
> | Quartic_to_Weierstrass(Q66,[0,1]); |
![]() ![]() ![]() ![]() |
(6.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(6.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(6.8) |
> | Elliptic_surface(%); |
![]() |
(6.9) |
![]() |
(6.9) |
> | Show_data(); |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
TypeNo.67
> | qc[67]:=(x^2-y*z)^2-x^3*y; |
![]() |
(7.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[67]),x,y); |
![]() |
> | singularities(subs(z=1,qc[67]),x,y); |
![]() |
(7.2) |
> | subs(y=t*(x+4*z)-16*z,qc[67]); |
![]() |
(7.3) |
> | Q67:=mapfactor(subs({z=1,x=U},%),U); |
![]() ![]() |
(7.4) |
> | subs(U=-4,Q67);
simplify(%); |
![]() |
(7.5) |
![]() |
(7.5) |
> | Quartic_to_Weierstrass(Q67,[-4,0]); |
![]() ![]() |
(7.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(7.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(7.8) |
> | Elliptic_surface(%); |
![]() |
(7.9) |
![]() |
(7.9) |
> | Show_data(); |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
TypeNo.68
> | qc[68]:=(x^2+3*y^2-x*z)^2-x^2*z^2-3*y^2*z^2; |
![]() |
(8.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[68]),x,y); |
![]() |
> | singularities(subs(z=1,qc[68]),x,y); |
![]() |
(8.2) |
> | subs(z=t*(x-y)-4*y,qc[68]); |
![]() |
(8.3) |
> | Q68:=mapfactor(subs({y=1,x=U},%),U); |
![]() ![]() |
(8.4) |
> | subs(U=1,Q68);
simplify(%); |
![]() |
(8.5) |
![]() |
(8.5) |
> | Quartic_to_Weierstrass(Q68,[1,0]); |
![]() ![]() ![]() |
(8.6) |
![]() ![]() |
(8.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(8.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() ![]() |
(8.9) |
> | Elliptic_surface(%); |
![]() |
(8.10) |
![]() |
(8.10) |
> | Show_data(); |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
TypeNo.69
> | qc[69]:=x^4-y^3*z; |
> |
![]() |
(9.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[69]),x,y); |
![]() |
> | singularities(subs(z=1,qc[69]),x,y); |
![]() |
(9.2) |
> | subs(z=t*x,qc[69]); |
![]() |
(9.3) |
> | Q69:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(9.4) |
> | subs(U=0,Q69);
simplify(%); |
![]() |
(9.5) |
![]() |
(9.5) |
> | Quartic_to_Weierstrass(Q69,[0,0]); |
![]() |
(9.6) |
![]() ![]() |
(9.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(9.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(9.9) |
> | Elliptic_surface(%); |
![]() |
(9.10) |
![]() |
(9.10) |
> | Show_data(); |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
TypeNo.70
> | qc[70]:=(x^2+y^2-z^2)*(y+z)*(y-z); |
![]() |
(10.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[70]),x,y); |
![]() |
> | singularities(subs(z=1,qc[70]),x,y); |
![]() |
(10.2) |
> | subs(y=t*x,qc[70]); |
![]() |
(10.3) |
> | Q70:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(10.4) |
> | subs(U=0,Q70);
simplify(%); |
![]() |
(10.5) |
![]() |
(10.5) |
> | Quartic_to_Weierstrass(Q70,[0,1]); |
![]() ![]() ![]() ![]() |
(10.6) |
![]() ![]() |
(10.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(10.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(10.9) |
> | Elliptic_surface(%); |
![]() |
(10.10) |
![]() |
(10.10) |
> | Show_data(); |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
> |
TypeNo.71
> | qc[71]:=x^4+y^4-x*y^2*z; |
![]() |
(2) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[71]),x,y); |
![]() |
> | singularities(subs(z=1,qc[71]),x,y); |
![]() |
(3) |
> | subs(z=t*x,qc[71]); |
![]() |
(4) |
> | Q71:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(5) |
> | subs(U=0,Q71);
simplify(%); |
![]() |
(6) |
![]() |
(6) |
> | Quartic_to_Weierstrass(Q71,[0,1]); |
![]() ![]() |
(7) |
![]() ![]() |
(8) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(9) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(10) |
> | Elliptic_surface(%); |
![]() |
(11) |
![]() |
(11) |
> | Show_data(); |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
![]() |
(12) |
TypeNo.72
> | qc[72]:=(x^2+y^2-z^2)*(y+z)*(y-z); |
![]() |
(13) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[72]),x,y); |
![]() |
> | singularities(subs(z=1,qc[72]),x,y); |
![]() |
(14) |
> | subs(y=t*(x-z)+z,qc[72]); |
![]() |
(15) |
> | Q72:=mapfactor(subs({z=1,x=U},%),U); |
![]() ![]() |
(16) |
> | subs(U=1,Q72);
simplify(%); |
![]() ![]() |
(17) |
![]() |
(17) |
> | Quartic_to_Weierstrass(Q72,[1,0]); |
![]() ![]() |
(18) |
![]() ![]() |
(19) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(20) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(21) |
> | Elliptic_surface(%); |
![]() |
(22) |
![]() |
(22) |
> | Show_data(); |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
![]() |
(23) |
TypeNo.73
> | qc[73]:=(x^2+y^2-z^2)*(4*x^2+y^2-4*z^2); |
![]() |
(24) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[73]),x,y); |
![]() |
> | singularities(subs(z=1,qc[73]),x,y); |
![]() |
(25) |
> | subs(z=t*x,qc[73]); |
![]() |
(26) |
> | Q73:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(27) |
> | subs(U=0,Q73);
simplify(%); |
![]() |
(28) |
![]() |
(28) |
> | Quartic_to_Weierstrass(Q73,[0,1]); |
![]() ![]() ![]() ![]() |
(29) |
![]() ![]() |
(30) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(31) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(32) |
> | Elliptic_surface(%); |
![]() |
(33) |
![]() |
(33) |
> | Show_data(); |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
![]() |
(34) |
TypeNo.74
> | qc[74]:=(x^2+y^2-z^2)*(y+z)*(y-z); |
![]() |
(35) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[74]),x,y); |
![]() |
> | singularities(subs(z=1,qc[74]),x,y); |
![]() |
(36) |
> | subs(y=t*(x-z),qc[74]); |
![]() |
(37) |
> | Q74:=mapfactor(subs({z=1,x=U},%),U); |
![]() ![]() |
(38) |
> | subs(U=1,Q74);
simplify(%); |
![]() ![]() |
(39) |
![]() |
(39) |
> | Quartic_to_Weierstrass(Q74,[1,0]); |
![]() ![]() |
(40) |
![]() ![]() |
(41) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(42) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(43) |
> | Elliptic_surface(%); |
![]() |
(44) |
![]() |
(44) |
> | Show_data(); |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
![]() |
(45) |
> |