> | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
(1) |
> | with(algcurves): |
TypeNo.41
> | qc[41]:=x^4+y^4-y^2*z^2-x^3*z; |
(1.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[41]),x,y); |
> | singularities(subs(z=1,qc[41]),x,y); |
(1.2) |
> | subs(z=t*x,qc[41]); |
(1.3) |
> | Q41:=mapfactor(subs({y=1,x=U},%),U); |
(1.4) |
> | subs(U=0,Q41);
simplify(%); |
(1.5) |
(1.5) |
> | Quartic_to_Weierstrass(Q41,[0,1]); |
(1.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(1.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(1.8) |
> | Elliptic_surface(%); |
(1.9) |
(1.9) |
> | Show_data(); |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
(1.10) |
latex(y^2 = x^3-t^2*x^2+(-4+4*t)*x-4*t^2*(-1+t));
{y}^{2}={x}^{3}-{t}^{2}{x}^{2}+ \left( -4+4\,t \right) x-4\,{t}^{2} |
\left( t-1 \right) |
> |
TypeNo.42
> | qc[42]:=(z^2+x^2+6*x*y-4*y^2)^2-12*x*y*(x-y)*(x+4*y); |
(2.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[42]),x,y); |
> | singularities(subs(z=1,qc[42]),x,y); |
(2.2) |
> | subs(y=t*x,qc[42]); |
(2.3) |
> | Q42:=mapfactor(subs({z=1,x=U},%),U); |
(2.4) |
> | subs(U=0,Q42);
simplify(%); |
(2.5) |
(2.5) |
> | Quartic_to_Weierstrass(Q42,[0,1]); |
(2.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(2.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(2.8) |
> | Elliptic_surface(%); |
(2.9) |
(2.9) |
> | Show_data(); |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
(2.10) |
> |
Type No. 43
> | qc[43]:=x^4-y^3*z; |
(3.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[43]),x,y); |
> | singularities(subs(z=1,qc[43]),x,y); |
(3.2) |
> | subs(y=t*(x-z),qc[43]); |
(3.3) |
> | Q43:=mapfactor(subs({z=1,x=U},%),U); |
(3.4) |
> | subs(U=1,Q43);
simplify(%); |
(3.5) |
(3.5) |
> | Quartic_to_Weierstrass(Q43,[1,1]); |
(3.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(3.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(3.8) |
> | Elliptic_surface(%); |
(3.9) |
(3.9) |
> | Show_data(); |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
(3.10) |
> |
TypeNo.44
> | qc[44]:=(x^2-y*z)*(x^2+y*z); |
(4.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[44]),x,y); |
> | singularities(subs(z=1,qc[44]),x,y); |
(4.2) |
> | subs(y=t*x+z,qc[44]); |
(4.3) |
> | Q44:=mapfactor(subs({z=1,x=U},%),U); |
(4.4) |
> | subs(U=0,Q44);
simplify(%); |
(4.5) |
(4.5) |
> | Quartic_to_Weierstrass(Q44,[0,I]); |
(4.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(4.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(4.8) |
> | Elliptic_surface(%); |
(4.9) |
(4.9) |
> | Show_data(); |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
(4.10) |
> |
TypeNo.45
> | qc[45]:=(y*z-x^2)^2-y^3*x; |
(5.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[45]),x,y); |
> | singularities(subs(z=1,qc[45]),x,y); |
(5.2) |
> | subs(y=t*x+z,qc[45]); |
(5.3) |
> | Q45:=mapfactor(subs({z=1,x=U},%),U); |
(5.4) |
> | subs(U=0,Q45);
simplify(%); |
(5.5) |
(5.5) |
> | Quartic_to_Weierstrass(Q45,[0,1]); |
(5.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(5.7) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
(5.8) |
> | Elliptic_surface(%); |
(5.9) |
(5.9) |
> | Show_data(); |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
> |
TypeNo.46
> | qc[46]:=(y*z-x^2)^2-y^3*x; |
(6.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[46]),x,y); |
> | singularities(subs(z=1,qc[46]),x,y); |
(6.2) |
> | subs(y=t*(x-z),qc[46]); |
(6.3) |
> | Q46:=mapfactor(subs({z=1,x=U},%),U); |
(6.4) |
> | subs(U=1,Q46);
simplify(%); |
(6.5) |
(6.5) |
> | Quartic_to_Weierstrass(Q46,[1,1]); |
(6.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(6.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(6.8) |
> | Elliptic_surface(%); |
(6.9) |
(6.9) |
> | Show_data(); |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
(6.10) |
> |
TypeNo.47
> | qc[47]:=(y*z-x^2)^2-y^3*x; |
(7.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[47]),x,y); |
> | singularities(subs(z=1,qc[47]),x,y); |
(7.2) |
> | subs(z=t*(x-y),qc[47]); |
(7.3) |
> | Q47:=mapfactor(subs({y=1,x=U},%),U); |
(7.4) |
> | subs(U=1,Q47);
simplify(%); |
(7.5) |
(7.5) |
> | Quartic_to_Weierstrass(Q47,[1,0]); |
(7.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(7.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(7.8) |
> | Elliptic_surface(%); |
(7.9) |
(7.9) |
> | Show_data(); |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
(7.10) |
> |
TypeNo.48
> | qc[48]:=x^4+y^4+x^3*y-x*y^2*z; |
(8.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[48]),x,y); |
> | singularities(subs(z=1,qc[48]),x,y); |
(8.2) |
> | subs(y=t*x-z,qc[48]); |
(8.3) |
> | Q48:=mapfactor(subs({z=1,x=U},%),U); |
(8.4) |
> | subs(U=0,Q48);
simplify(%); |
(8.5) |
(8.5) |
> | Quartic_to_Weierstrass(Q48,[0,1]); |
(8.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(8.7) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
(8.8) |
> | Elliptic_surface(%); |
(8.9) |
(8.9) |
> | Show_data(); |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
> |
TypeNo.49
> | qc[49]:=x^4+y^4-x*y^2*z; |
(9.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[50]),x,y); |
> | singularities(subs(z=1,qc[49]),x,y); |
(9.2) |
> | subs(z=t*y+2*x,qc[49]); |
(9.3) |
> | Q49:=mapfactor(subs({x=1,y=U},%),U); |
(9.4) |
> | subs(U=0,Q49);
simplify(%); |
(9.5) |
(9.5) |
> | Quartic_to_Weierstrass(Q49,[0,1]); |
(9.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(9.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(9.8) |
> | Elliptic_surface(%); |
(9.9) |
(9.9) |
> | Show_data(); |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
(9.10) |
TypeNo.50
> | qc[50]:=x^4+y^4-x*y^2*z; |
(10.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[50]),x,y); |
> | singularities(subs(z=1,qc[50]),x,y); |
(10.2) |
> | subs(z=t*(y-x)+2*x,qc[50]); |
(10.3) |
> | Q50:=mapfactor(subs({x=1,y=U},%),U); |
(10.4) |
> | subs(U=1,Q50);
simplify(%); |
(10.5) |
(10.5) |
> | Quartic_to_Weierstrass(Q46,[1,0]); |
(10.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(10.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(10.8) |
> | Elliptic_surface(%); |
(10.9) |
(10.9) |
> | Show_data(); |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
> |