> | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
![]() |
(1) |
> | with(algcurves): |
TypeNo.31
> | qc[31]:=x^4+x^3*z-y^2*z^2; |
![]() |
(1.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[31]),x,y); |
Warning, the name changecoords has been redefined
|
![]() |
> | singularities(subs(z=1,qc[31]),x,y); |
![]() |
(1.2) |
> | subs(y=t*(x+z)+z,qc[31]); |
![]() |
(1.3) |
> | Q31:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(1.4) |
> | subs(U=-1,Q31);
simplify(%); |
![]() |
(1.5) |
![]() |
(1.5) |
> | Quartic_to_Weierstrass(Q31,[-1,I]); |
![]() ![]() ![]() ![]() ![]() |
(1.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(1.7) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
![]() |
(1.8) |
> | Elliptic_surface(%); |
![]() |
(1.9) |
![]() |
(1.9) |
> | Show_data(); |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
![]() |
(1.10) |
> | latex(y^2 = x^3+(t^2-3)*x^2+(6*t+7)*x-4-4*t); |
{y}^{2}={x}^{3}+ \left( {t}^{2}-3 \right) {x}^{2}+ \left( 6\,t+7 |
\right) x-4-4\,t |
TypeNo.32
> | qc[32]:=x^4+x^3*z-y^2*z^2; |
![]() |
(2.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[32]),x,y); |
![]() |
> | singularities(subs(z=1,qc[32]),x,y); |
![]() |
(2.2) |
> | subs(z=t*(x-y),qc[32]); |
![]() |
(2.3) |
> | Q32:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(2.4) |
> | subs(U=1,Q32);
simplify(%); |
![]() |
(2.5) |
![]() |
(2.5) |
> | Quartic_to_Weierstrass(Q32,[1,1]); |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(2.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() ![]() |
(2.7) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
![]() |
(2.8) |
> | Elliptic_surface(%); |
![]() |
(2.9) |
![]() |
(2.9) |
> | Show_data(); |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
![]() |
(2.10) |
TypeNo.33
> | qc[33]:=-y^2*(3*x^2-(3*z-y)^2)+x^3*(9*x+2*y-12*z); |
![]() |
(3.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[33]),x,y); |
![]() |
> | singularities(subs(z=1,qc[33]),x,y); |
![]() |
(3.2) |
> | subs(y=t*x+6*z,qc[33]); |
![]() |
(3.3) |
> | Q33:=mapfactor(subs({z=1,x=U},%),U); |
![]() ![]() |
(3.4) |
> | subs(U=0,Q33);
simplify(%); |
![]() |
(3.5) |
![]() |
(3.5) |
> | Quartic_to_Weierstrass(Q33,[0,18]); |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(3.6) |
![]() ![]() |
(3.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() ![]() ![]() |
(3.8) |
> | mapfactor(subs({X=4*9*X,Y=8*27*Y},%[1])/(64*729),[X,Y]); |
![]() ![]() |
(3.9) |
> | mapfactor(subs({X=9*X,Y=27*Y},%)/729,[X,Y]); |
![]() ![]() |
(3.10) |
> | mapfactor(subs({X=9*X,Y=27*Y},%)/729,[X,Y]); |
![]() ![]() |
(3.11) |
> | Elliptic_surface(%); |
![]() |
(3.12) |
![]() ![]() |
(3.12) |
> | Show_data(); |
![]() ![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
![]() |
(3.13) |
TypeNo.34
> | qc[34]:=x^4+y^4-x^2*z^2; |
![]() |
(4.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[34]),x,y); |
![]() |
> | singularities(subs(z=1,qc[34]),x,y); |
![]() |
(4.2) |
> | subs(z=t*x,qc[34]); |
![]() |
(4.3) |
> | Q34:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(4.4) |
> | subs(U=0,Q34);
simplify(%); |
![]() |
(4.5) |
![]() |
(4.5) |
> | Quartic_to_Weierstrass(Q34,[0,1]); |
![]() ![]() |
(4.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() |
(4.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(4.8) |
> | Elliptic_surface(%); |
![]() |
(4.9) |
![]() |
(4.9) |
> | Show_data(); |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
![]() |
(4.10) |
TypeNo.35
> | qc[35]:=(x^2+y^2-z^2)*(2*x^2+y^2-2*z^2); |
![]() |
(5.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[35]),x,y); |
Warning, the name changecoords has been redefined
|
![]() |
> | singularities(subs(z=1,qc[35]),x,y); |
![]() |
(5.2) |
> | subs(y=t*x+2*z,qc[35]); |
![]() |
(5.3) |
> | Q35:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(5.4) |
> | subs(U=0,Q35);
simplify(%); |
![]() |
(5.5) |
![]() |
(5.5) |
> | Quartic_to_Weierstrass(Q35,[0,6^(1/2)]); |
![]() ![]() ![]() ![]() ![]() ![]() |
(5.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() ![]() |
(5.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() ![]() |
(5.8) |
> | Elliptic_surface(%); |
![]() |
(5.9) |
![]() ![]() |
(5.9) |
> | Show_data(); |
![]() ![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
![]() |
(5.10) |
TypeNo.36
> | qc[36]:=x^4+x^3*z+y^2*z^2; |
![]() |
(6.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[36]),x,y); |
![]() |
> | singularities(subs(z=1,qc[36]),x,y); |
![]() |
(6.2) |
> | subs(z=t*(x-2*y)+2*y,qc[36]); |
![]() |
(6.3) |
> | Q36:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(6.4) |
> | subs(U=2,Q36);
simplify(%); |
![]() |
(6.5) |
![]() |
(6.5) |
> | Quartic_to_Weierstrass(Q36,[2,6]); |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(6.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() ![]() |
(6.7) |
> | mapfactor(subs({X=4*9*X,Y=8*27*Y},%[1])/(729*64),[X,Y]); |
![]() |
(6.8) |
> | Elliptic_surface(%); |
![]() |
(6.9) |
![]() |
(6.9) |
> | Show_data(); |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
![]() |
(6.10) |
TypeNo.37
> | qc[37]:=x^4+x^3*z-2*y^2*z^2; |
![]() |
(7.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[37]),x,y); |
![]() |
> | singularities(subs(z=1,qc[37]),x,y); |
![]() |
(7.2) |
> | subs(y=t*(x-z)+z,qc[37]); |
![]() |
(7.3) |
> | Q37:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(7.4) |
> | subs(U=1,Q37);
simplify(%); |
![]() |
(7.5) |
![]() |
(7.5) |
> | Quartic_to_Weierstrass(Q37,[1,0]); |
![]() ![]() ![]() |
(7.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(7.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(7.8) |
> | Elliptic_surface(%); |
![]() |
(7.9) |
![]() |
(7.9) |
> | Show_data(); |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
![]() |
(7.10) |
TypeNo.38
> | qc[38]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
![]() |
(8.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[38]),x,y); |
![]() |
> | singularities(subs(z=1,qc[38]),x,y); |
![]() |
(8.2) |
> | subs(z=t*x,qc[38]); |
![]() |
(8.3) |
> | Q38:=mapfactor(subs({y=1,x=U},%),U); |
![]() |
(8.4) |
> | subs(U=0,Q38);
simplify(%); |
![]() |
(8.5) |
![]() |
(8.5) |
> | Quartic_to_Weierstrass(Q38,[0,1]); |
![]() ![]() ![]() ![]() |
(8.6) |
![]() ![]() |
(8.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(8.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(8.9) |
> | Elliptic_surface(%); |
![]() |
(8.10) |
![]() |
(8.10) |
> | Show_data(); |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
![]() |
(8.11) |
TypeNo.39
> | qc[39]:=(x^2+y^2-x*z)^2-x^2*z^2-y^2*z^2; |
![]() |
(9.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[39]),x,y); |
![]() |
> | singularities(subs(z=1,qc[39]),x,y); |
![]() |
(9.2) |
> | subs(y=t*(x-z),qc[39]); |
![]() |
(9.3) |
> | Q39:=mapfactor(subs({z=1,x=U},%),U); |
![]() ![]() |
(9.4) |
> | subs(U=1,Q39);
simplify(%); |
![]() |
(9.5) |
![]() |
(9.5) |
> | Quartic_to_Weierstrass(Q39,[1,I]); |
![]() ![]() ![]() ![]() ![]() |
(9.6) |
![]() ![]() |
(9.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(9.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() |
(9.9) |
> | Elliptic_surface(%); |
![]() |
(9.10) |
![]() |
(9.10) |
> | Show_data(); |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
![]() |
(9.11) |
TypeNo.40
> | qc[40]:=(x^2+y^2-2*x*z)^2-x^2*z^2-y^2*z^2; |
![]() |
(10.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[40]),x,y); |
![]() |
> | singularities(subs(z=1,qc[40]),x,y); |
![]() |
(10.2) |
> | subs(y=t*x+z,qc[40]); |
![]() |
(10.3) |
> | Q40:=mapfactor(subs({z=1,x=U},%),U); |
![]() |
(10.4) |
> | subs(U=0,Q40);
simplify(%); |
![]() |
(10.5) |
![]() |
(10.5) |
> | Quartic_to_Weierstrass(Q40,[0,0]); |
![]() ![]() ![]() |
(10.6) |
![]() ![]() |
(10.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
![]() ![]() |
(10.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
![]() ![]() |
(10.9) |
> | Elliptic_surface(%); |
![]() |
(10.10) |
![]() |
(10.10) |
> | Show_data(); |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
![]() |
(10.11) |
> |