> | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
(1) |
> | with(algcurves): |
TypeNo.21
> | qc[21]:=(2*x^2-z^2+2*y^2)^2-4*x*y*(x-y)^2; |
(1.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[21]),x,y); |
> | singularities(subs(z=1,qc[21]),x,y); |
(1.2) |
> | subs(y=t*x,qc[21]); |
(1.3) |
> | Q21:=mapfactor(subs({z=1,x=U},%),U); |
(1.4) |
> | subs(U=0,Q21);
simplify(%); |
(1.5) |
(1.5) |
> | Quartic_to_Weierstrass(Q21,[0,1]); |
(1.6) |
(1.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(1.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(1.9) |
> | Elliptic_surface(%); |
(1.10) |
(1.10) |
> | Show_data(); |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
TypeNo.22
> | qc[22]:=2*x^4+y^4-3*x^2*y*z-2*y^3*z+y^2*z^2; |
(2.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[22]),x,y); |
> | singularities(subs(z=1,qc[22]),x,y); |
(2.2) |
> | subs(y=t*(x-z)+2*z,qc[22]); |
(2.3) |
> | Q22:=mapfactor(subs({z=1,x=U},%),U); |
(2.4) |
> | subs(U=1,Q22);
simplify(%); |
(2.5) |
(2.5) |
> | Quartic_to_Weierstrass(Q22,[1,0]); |
(2.6) |
> |
> | Elliptic_surface(%); |
(2.7) |
(2.7) |
> | Show_data(); |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
(2.8) |
> | latex(2*x^4+y^4-3*x^2*y*z-2*y^3*z+y^2*z^2); |
2\,{x}^{4}+{y}^{4}-3\,{x}^{2}yz-2\,{y}^{3}z+{y}^{2}{z}^{2} |
TypeNo.23
> | qc[23]:=(3*x^2+y^2)^2-6*x^2*z^2+2*y^2*z^2; |
(3.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[23]),x,y); |
> | singularities(subs(z=1,qc[23]),x,y); |
(3.2) |
> | subs(z=t*(x-y)+2*y,qc[23]); |
(3.3) |
> | Q23:=mapfactor(subs({y=1,x=U},%),U); |
(3.4) |
> | subs(U=1,Q23);
simplify(%); |
(3.5) |
(3.5) |
> | Quartic_to_Weierstrass(Q23,[1,0]); |
(3.6) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(3.7) |
> | Elliptic_surface(%); |
(3.8) |
(3.8) |
> | Show_data(); |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
(3.9) |
TypeNo.24
> | QC[3]:=x^4+y^4+x^2*z^2-y^2*z^2; |
(4.1) |
> | mapfactor(subs({x=1,y=U},subs(z=t*y,QC[3])),U); |
(4.2) |
> | Quartic_to_Weierstrass(%,[0,1]); |
(4.3) |
> | Elliptic_surface(%):
Show_data(); |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
> |
TypeNo.25
> | qc[25]:=x^4+x^3*z-y^2*z^2; |
(5.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[25]),x,y); |
> | singularities(subs(z=1,qc[25]),x,y); |
(5.2) |
> | subs(y=t*x+z,qc[25]); |
(5.3) |
> | Q25:=mapfactor(subs({z=1,x=U},%),U); |
(5.4) |
> | subs(U=0,Q25);
simplify(%); |
(5.5) |
(5.5) |
> | Quartic_to_Weierstrass(Q25,[0,I]); |
(5.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(5.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(5.8) |
> | Elliptic_surface(%); |
(5.9) |
(5.9) |
> | Show_data(); |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
(5.10) |
TypeNo.26
> | qc[26]:=x^4+y^4-x*y^2*z; |
(6.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[26]),x,y); |
> | singularities(subs(z=1,qc[26]),x,y); |
(6.2) |
> | subs(y=t*x+z,qc[26]); |
(6.3) |
> | Q26:=mapfactor(subs({z=1,x=U},%),U); |
(6.4) |
> | subs(U=0,Q26);
simplify(%); |
(6.5) |
(6.5) |
> | Quartic_to_Weierstrass(Q26,[0,1]); |
(6.6) |
(6.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(6.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(6.9) |
> | Elliptic_surface(%); |
(6.10) |
(6.10) |
> | Show_data(); |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
TypeNo.27
> | qc[27]:=x^4+y^4+x^3*y-x*y^2*z; |
(7.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[27]),x,y); |
> | singularities(subs(z=1,qc[27]),x,y); |
(7.2) |
> | subs(z=t*y+2*x,qc[27]); |
(7.3) |
> | Q27:=mapfactor(subs({x=1,y=U},%),U); |
(7.4) |
> | subs(U=0,Q27);
simplify(%); |
(7.5) |
(7.5) |
> | Quartic_to_Weierstrass(Q27,[0,1]); |
(7.6) |
(7.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(7.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(7.9) |
> | Elliptic_surface(%); |
(7.10) |
(7.10) |
> | Show_data(); |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
TypeNo.28
> | qc[28]:=(z^2-x*z-y^2)^2-x^3*y; |
(8.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[28]),x,y); |
> | singularities(subs(z=1,qc[28]),x,y); |
(8.2) |
> | subs(y=t*x,qc[28]); |
(8.3) |
> | Q28:=mapfactor(subs({z=1,x=U},%),U); |
(8.4) |
> | subs(U=0,Q28);
simplify(%); |
(8.5) |
(8.5) |
> | Quartic_to_Weierstrass(Q28,[0,1]); |
(8.6) |
(8.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(8.8) |
> | Elliptic_surface(%); |
(8.9) |
(8.9) |
> | Show_data(); |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
TypeNo.29
> | qc[29]:=(x^2+y^2-3*x*z)^2-4*x^2*(2*z^2-x*z); |
(9.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[29]),x,y); |
> | singularities(subs(z=1,qc[29]),x,y); |
(9.2) |
> | subs(y=t*(x-2*z),qc[29]); |
(9.3) |
> | Q29:=mapfactor(subs({z=1,x=U},%),U); |
(9.4) |
> | subs(U=2,Q29);
simplify(%); |
(9.5) |
(9.5) |
> | Quartic_to_Weierstrass(Q29,[2,2]); |
(9.6) |
(9.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(9.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(9.9) |
> | Elliptic_surface(%); |
(9.10) |
(9.10) |
> | Show_data(); |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
TypeNo.30
> | qc[30]:=x^4+y^4-x*y^2*z; |
(10.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[30]),x,y); |
> | singularities(subs(x=1,qc[30]),y,z); |
(10.2) |
> | subs(z=t*(y-2*x)+2*x,qc[30]); |
(10.3) |
> | Q30:=mapfactor(subs({x=1,y=U},%),U); |
(10.4) |
> | subs(U=2,Q30);
simplify(%); |
(10.5) |
(10.5) |
> | Quartic_to_Weierstrass(Q30,[2,3]); |
(10.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(10.7) |
> | mapfactor(subs({X=9*X,Y=27*Y},%[1])/729,[X,Y]); |
> |
(10.8) |
> | Elliptic_surface(%); |
(10.9) |
(10.9) |
> | Show_data(); |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
> | latex(y^2 = x^3+(-4*t+22)*x^2+(4*t^2-56*t+156)*x+25*t^2-192*t+360); |
{y}^{2}={x}^{3}+ \left( -4\,t+22 \right) {x}^{2}+ \left( 4\,{t}^{2}-56 |
\,t+156 \right) x+25\,{t}^{2}-192\,t+360 |
> |