> | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
(1) |
> | with(algcurves): |
TypeNo.11
> | qc[11]:=y^2*z^2-x^3*z-x^3*y; |
(1.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[11]),x,y); |
> | singularities(subs(z=1,qc[11]),x,y); |
(1.2) |
> | subs(y=t*(x-z)+z,qc[11]); |
(1.3) |
> | Q11:=mapfactor(subs({z=1,x=U},%),U); |
(1.4) |
> | subs(U=1,Q11);
simplify(%); |
(1.5) |
(1.5) |
> | Quartic_to_Weierstrass(Q11,[1,I]); |
(1.6) |
(1.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(1.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(1.9) |
> | Elliptic_surface(%); |
(1.10) |
(1.10) |
> | Show_data(); |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
(1.11) |
TypeNo.12
> | qc[12]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
(2.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[12]),x,y); |
> | singularities(subs(z=1,qc[12]),x,y); |
(2.2) |
> | subs(y=t*(x-z)+z,qc[12]); |
(2.3) |
> | Q12:=mapfactor(subs({z=1,x=U},%),U); |
(2.4) |
> | subs(U=1,Q12);
simplify(%); |
(2.5) |
(2.5) |
> | Quartic_to_Weierstrass(Q12,[1,2]); |
(2.6) |
(2.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(2.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(2.9) |
> | Elliptic_surface(%); |
(2.10) |
(2.10) |
> | Show_data(); |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
(2.11) |
TypeNo.13
> | QC[1]:=x^4+y^4-z^4; |
> |
(3.1) |
> | mapfactor(subs({z=1,x=U},subs(y=t*x,QC[1])),U); |
(3.2) |
> | Quartic_to_Weierstrass(-%,[0,1]); |
(3.3) |
> | Elliptic_surface(%):
Show_data(); |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
TypeNo.14
> | qc[14]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
(4.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[14]),x,y); |
> | singularities(subs(z=1,qc[14]),x,y); |
(4.2) |
> | subs(y=t*(x-z),qc[14]); |
(4.3) |
> | Q14:=mapfactor(subs({z=1,x=U},%),U); |
(4.4) |
> | subs(U=1,Q14);
simplify(%); |
(4.5) |
(4.5) |
> | Quartic_to_Weierstrass(Q14,[1,0]); |
(4.6) |
(4.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(4.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(4.9) |
> | Elliptic_surface(%); |
(4.10) |
(4.10) |
> | Show_data(); |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
(4.11) |
TypeNo.15
> | qc[15]:=(x^2+y^2-3*x*z)^2-4*x^2*(2*z^2-x*z); |
(5.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[15]),x,y); |
> | singularities(subs(z=1,qc[15]),x,y); |
(5.2) |
> | subs(y=t*(x+z),qc[15]); |
(5.3) |
> | Q15:=mapfactor(subs({z=1,x=U},%),U); |
(5.4) |
> | subs(U=-1,Q15);
simplify(%); |
(5.5) |
(5.5) |
> | Quartic_to_Weierstrass(Q15,[-1,2]); |
(5.6) |
(5.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(5.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(5.9) |
> | Elliptic_surface(%); |
(5.10) |
(5.10) |
> | Show_data(); |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
(5.11) |
TypeNo.16
> | qc[16]:=x^4+y^4+x^3*y-x*y^2*z; |
(6.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[16]),x,y); |
> | singularities(subs(z=1,qc[16]),x,y); |
(6.2) |
> | subs(z=t*(x-y)+2*y,qc[16]); |
(6.3) |
> | Q16:=mapfactor(subs({y=1,x=U},%),U); |
(6.4) |
> | subs(U=1,Q16);
simplify(%); |
(6.5) |
(6.5) |
> | Quartic_to_Weierstrass(Q16,[1,1]); |
(6.6) |
(6.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(6.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1]/64),[X,Y]); |
(6.9) |
> | Elliptic_surface(%); |
(6.10) |
(6.10) |
> | Show_data(); |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
(6.11) |
> | latex(y^2 = x^3+(-t+9)*x^2+(21-5*t)*x+14-6*t+t^2); |
{y}^{2}={x}^{3}+ \left( -t+9 \right) {x}^{2}+ \left( 21-5\,t \right) x |
+14-6\,t+{t}^{2} |
TypeNo.17
> | qc[17]:=(x^2-y*z)^2+y*(4*x^3-x*y^2-y^3); |
(7.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[17]),x,y); |
> | singularities(subs(z=1,qc[17]),x,y); |
(7.2) |
> | subs(y=t*x+z,qc[17]); |
(7.3) |
> | Q17:=mapfactor(subs({z=1,x=U},%),U); |
(7.4) |
> | subs(U=0,Q17);
simplify(%); |
(7.5) |
(7.5) |
> | Quartic_to_Weierstrass(Q17,[0,0]); |
(7.6) |
(7.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(7.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(7.9) |
> | Elliptic_surface(%); |
(7.10) |
(7.10) |
> | Show_data(); |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
(7.11) |
TypeNo.18
> | qc[18]:=x^4+y^4-x^2*y*z-x*y^2*z; |
(8.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[18]),x,y); |
> | singularities(subs(z=1,qc[18]),x,y); |
(8.2) |
> | subs(y=t*(x-z)+z,qc[18]); |
(8.3) |
> | Q18:=mapfactor(subs({z=1,x=U},%),U); |
(8.4) |
> | subs(U=1,Q18);
simplify(%); |
(8.5) |
(8.5) |
> | Quartic_to_Weierstrass(Q18,[1,0]); |
(8.6) |
(8.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(8.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(8.9) |
> | Elliptic_surface(%); |
(8.10) |
(8.10) |
> | Show_data(); |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
(8.11) |
TypeNo.19
> | qc[19]:=x^4+y^4-x^2*z^2; |
(9.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[19]),x,y); |
> | singularities(subs(z=1,qc[19]),x,y); |
(9.2) |
> | subs(y=t*(x-z),qc[19]); |
(9.3) |
> | Q19:=mapfactor(subs({z=1,x=U},%),U); |
(9.4) |
> | subs(U=1,Q19);
simplify(%); |
(9.5) |
(9.5) |
> | Quartic_to_Weierstrass(Q19,[1,0]); |
(9.6) |
(9.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(9.8) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(9.9) |
> | Elliptic_surface(%); |
(9.10) |
(9.10) |
> | Show_data(); |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.11) |
(9.12) |
TypeNo.20
> | qc[20]:=(x^2+y^2-2*x*z)^2-x^2*z^2-y^2*z^2; |
(10.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[20]),x,y); |
> | singularities(subs(z=1,qc[20]),x,y); |
(10.2) |
> | subs(y=t*(x-2*z),qc[20]); |
(10.3) |
> | Q20:=mapfactor(subs({z=1,x=U},%),U); |
(10.4) |
> | subs(U=2,Q20);
simplify(%); |
(10.5) |
(10.5) |
> | Quartic_to_Weierstrass(Q20,[2,2*I]); |
(10.6) |
(10.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(10.8) |
> | mapfactor(subs({X=4*X,Y=8*Y},%[1])/64,[X,Y]); |
(10.9) |
> | Elliptic_surface(%); |
(10.10) |
(10.10) |
> | Show_data(); |
(10.11) |
(10.11) |
(10.11) |
(10.11) |
(10.11) |
(10.11) |
(10.11) |
(10.11) |
(10.11) |
(10.11) |