> | read `/Documents and Settings/ibuki/My Documents/ESC/ESC.mpl`;
ESC(); |
(1) |
> | with(algcurves): |
Type No. 1
> | QC[1]:=x^4+y^4-z^4; |
(1.1) |
> | plot_real_curve(subs(z=1,QC[1]),x,y); |
> | mapfactor(subs({z=1,x=U},subs(y=t*(x-2*z),QC[1])),U); |
(1.2) |
> | factor(subs(U=1,%)); |
(1.3) |
> | Quartic_to_Weierstrass(%%,[1,t^2]); |
(1.4) |
> | step5(%[1],{x = X, z = Z, y = Y}, [x, y, z]); |
(1.5) |
> | mapfactor(subs({X=t^4*X,Y=t^6*Y},%[1])/t^12,[X,Y]); |
(1.6) |
> | Elliptic_surface(%):
Show_data(); |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
(1.7) |
Type No. 2
> | QC[2]:=x^4+y^4-2*z^4; |
(2.1) |
> | mapfactor(subs({z=1,x=U},subs(y=t*(x-z)+z,QC[2])),U); |
(2.2) |
> | Quartic_to_Weierstrass(%/2,[1,0]); |
(2.3) |
> | Elliptic_surface(%):
Show_data(); |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
(2.4) |
> | ifactor(discrim(Show(Disc)/(t+1)^2,t)); |
(2.5) |
> | factor(Show(Disc) mod 3); |
(2.6) |
Type No. 3
> | mapfactor(subs({z=1,x=U},subs(y=t*(x-z),QC[1])),U); |
(3.1) |
> | Quartic_to_Weierstrass(%/2,[1,0]); |
(3.2) |
> | step5(%[1],{x = X, z = Z, y = Y}, [x, y, z]); |
(3.3) |
> | Elliptic_surface(%):
Show_data(); |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.4) |
(3.5) |
Type No. 4
> | QC[3]:=x^4+y^4+x^2*z^2-y^2*z^2; |
(4.1) |
> | plot_real_curve(subs(z=1,QC[3]),x,y); |
> | mapfactor(subs({x=U,z=1},subs(y=t*x+z,QC[3])),U); |
(4.2) |
> | Quartic_to_Weierstrass(%,[0,0]); |
(4.3) |
> | Elliptic_surface(%):
Show_data(); |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
(4.4) |
Type No. 5
> | QC[4]:=x^4+y^4-x^3*z-x^2*z^2; |
(5.1) |
> | plot_real_curve(subs(z=1,QC[4]),x,y); |
> | singularities(subs(z=1,x^4+y^4-x^3*z-x^2*z^2),x,y); |
(5.2) |
> | subs({x=1,y=U},subs(z=y*t*2,x^4+y^4-x^3*z-x^2*z^2)); |
(5.3) |
> | Quartic_to_Weierstrass(%,[0,1]); |
(5.4) |
> | step5(%[1],{x = X, z = Z, y = Y}, [x, y, z]); |
(5.5) |
> | Elliptic_surface(%):
Show_data(); |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
(5.6) |
Type No. 6
> | QC[5]:=x^4+y^4-y^2*z^2-x^3*z; |
(6.1) |
> | plot_real_curve(subs(z=1,QC[5]),x,y); |
> | singularities(subs(z=1,QC[5]),x,y); |
(6.2) |
> | mapfactor(subs({x=U,z=1},subs(y=t*(x-z),QC[5])),U); |
(6.3) |
> | Quartic_to_Weierstrass(%,[1,0]); |
(6.4) |
> | Elliptic_surface(%);
Show_data(); |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
(6.5) |
Type No. 7
> | QC[6]:=(x^2+y^2)^2-x^2*z^2+y^2*z^2; |
(7.1) |
> | plot_real_curve(subs(z=1,QC[6]),x,y); |
> | mapfactor(subs({z=1,x=U},subs(y=t*x+z,QC[6])),U); |
(7.2) |
> | Quartic_to_Weierstrass(%/2,[0,1]); |
(7.3) |
> | step5(%[1],{x = X, z = Z, y = Y}, [x, y, z]); |
(7.4) |
> | Elliptic_surface(%);
Show_data(); |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
(7.5) |
Type No.8
> |
> | qc[8]:=x^3*y-x^2*z^2+y^2*z^2; |
(8.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[8]),x,y); |
> | singularities(subs(z=1,qc[8]),x,y); |
(8.2) |
> | subs(y=t*x+z,qc[8]); |
(8.3) |
> | Q8:=mapfactor(subs({z=1,x=U},%),U); |
(8.4) |
> | subs(U=0,Q8);
simplify(%); |
(8.5) |
(8.5) |
> | Quartic_to_Weierstrass(Q8,[0,1]); |
(8.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(8.7) |
> | mapfactor(subs({X=X,Y=Y},%[1]),[X,Y]); |
(8.8) |
> | Elliptic_surface(%); |
(8.9) |
(8.9) |
> | Show_data(); |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
(8.10) |
Type No.9
> | qc[9]:=x^4+y^4-x^2*z^2; |
(9.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[9]),x,y); |
> | singularities(subs(z=1,qc[9]),x,y); |
(9.2) |
> | subs(y=t*x+z,qc[9]); |
(9.3) |
> | Q9:=mapfactor(subs({z=1,x=U},%),U); |
(9.4) |
> | subs(U=0,Q9);
simplify(%); |
(9.5) |
(9.5) |
> | Quartic_to_Weierstrass(Q9,[0,1]); |
(9.6) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z});Elliptic_surface(%); |
(9.7) |
(9.7) |
(9.7) |
> | Show_data(); |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
(9.8) |
Type No.10
> | qc[10]:=x^4+y^4+x^3*y-x^2*z^2; |
(10.1) |
> | with(plots):
with(algcurves): plot_real_curve(subs(z=1,qc[10]),x,y); |
> | singularities(subs(z=1,qc[10]),x,y); |
(10.2) |
> | subs(y=t*(x-z),qc[10]); |
(10.3) |
> | Q10:=mapfactor(subs({z=1,x=U},%),U); |
(10.4) |
> | subs(U=1,Q10);
simplify(%); |
(10.5) |
(10.5) |
> | Quartic_to_Weierstrass(Q10,[1,0]); |
(10.6) |
(10.7) |
> | step5(%[1],{x=X,z=Z,y=Y},{x,y,z}); |
(10.8) |
> | Elliptic_surface(%); |
(10.9) |
(10.9) |
> | Show_data(); |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |
(10.10) |