基礎数学 A1	入学年度	学部	学 科	組	番号	ļ	検	氏 名	
金曜2限 担当: 鍬田 政人									

- 最終的な答えだけを書くのではなく、途中の計算や説明も簡潔に書くこと、そうでない場合は大きく減点する.
- 1 次の式を展開せよ.

$$(x^2 - xy - y^2)(x^2 + xy - y^2) =$$

- 2 次の各式を因数分解せよ.
- a) $54x^3 2 =$
- b) $a^2 \frac{10}{3}ab + b^2 =$
- a) P(x) を因数分解せよ.

$$P(x) =$$

b) Q(3) を求めよ

$$Q(3) =$$

c) Q(x) を因数分解せよ.

$$Q(x) =$$

d) P(x) と Q(x) の最大公約数、および最小公倍数を求めよ、

最大公約数 =

最小公倍数 =

4 a) 次の除法を行い、商と余りを求めよ.

$$2x^2 - x - 1$$
) $x^4 - x^3 + x^2 - 1$

b) 上の結果を利用して次の分数式を,整式と分子が分母より低次の分数式との和の形に表せ.

$$\frac{x^4 - x^3 + x^2 - 1}{2x^2 - x - 1} =$$

5 次の各々の式をできるだけ簡単にせよ.

a)
$$\frac{6abc}{\frac{3b^2c}{4a}} =$$

b)
$$\frac{4\frac{a}{bc}}{6\left(\frac{a}{bc}\right)^2 - 2\frac{a}{bc}} =$$

c)
$$\frac{3x + y}{x^2 - xy - 6y^2} - \frac{x - y}{x^2 - 5xy + 6y^2}$$

d)
$$\frac{a^3 - b^3}{(a+b)^2} \div \frac{a^3 + a^2b + ab^2}{a^2 + 2ab + b^2} \times \frac{a^2b - ab^2}{a^2b - b^3}$$

e)
$$\frac{h}{\frac{1}{a+h} - \frac{1}{a}} =$$

6 次の不等式を解け、またその解を数直線上に表せ、

a)
$$\begin{cases} 2x^2 - x - 3 \ge 0 \\ \frac{2x - 1}{3} > \frac{3x - 2}{4} \end{cases}$$

b)
$$|3x - 2| \ge 4$$

7 a) 放物線 $y = -\frac{1}{2}x^2 + 3x - 1$ は、	放物線 $y = -\frac{1}{2}x^2$ をどのよ
に平行移動したものかを述べよ	

- b) 2次関数 $y = -\frac{1}{2}x^2 + 3x 1$ の $0 \le x \le 4$ における最大値、最小値を求めよ.
- 8 2 次方程式 $\frac{x^2}{6} \frac{x}{3} + \frac{1}{4} = 0$ を解け.
- 9 周囲の長さ 24cm の長方形において、短い方の辺の長さを x とする.
- a) 長い方の辺の長さをxで表せ、長い方の辺の長さが、短い方の辺の長さよりも大きいという条件を考慮して、xの取り得る範囲を求めよ。
- b) この長方形の面積が $25\,\mathrm{cm}^2$ 以上 $30\,\mathrm{cm}^2$ 未満であるようにするには、長方形の短い方の辺の長さをどのようにすればよいか.

[10] 1 杯の原価が 100 円のカフェラテを, 1 杯 320 円で売ると, 毎日 120 杯の売り上げがある。もし値上げをすれば, 1 杯 10 円の値上げにつき 5 杯の割合で、売り上げが減少するという。利益を最大にするには, 1 杯いくらで販売すればよいか.

[11] 次の各々の式を簡単にせよ. ただし, a, b は正の定数とする.

a)
$$\sqrt[3]{-\sqrt{a^6}} =$$

b)
$$\sqrt{ab^3} \div \sqrt[6]{ab^5} \times \sqrt[3]{a^2b} =$$

c)
$$\frac{a^{\frac{1}{2}} \div a^{\frac{3}{4}}}{a^{\frac{1}{6}} \div a^{\frac{2}{3}}} =$$

d)
$$\log_{\sqrt{2}} 8 =$$

e)
$$a^{2 \log_a 3} =$$

f)
$$\frac{1}{2}\log_{10}6 + \log_{10}\sqrt{3} - \log_{10}\sqrt{18} =$$

g)
$$\log_3(4+\sqrt{7}) + \log_3(4-\sqrt{7}) =$$

12 $\sqrt{2}$, $\sqrt[3]{3}$, $\sqrt[5]{5}$ を小さいものから順に並べよ.

[13] あるお店では売り尽くしセールとして、その日に売れなかった商品を次の日にさらに 20%OFF で売ることにした。商品の値段が元の $\frac{1}{10}$ になるのは何日売れ残ったときか。ただし、 $\log_{10}2=0.3010$ として答えよ。

基礎数学 A1	入学年度	学部	学 科	組	番号	ļ	検	氏 名	
金曜2限 担当: 鍬田 政人									

14 次の極限値を求めよ.

a)
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 2x - 3} =$$

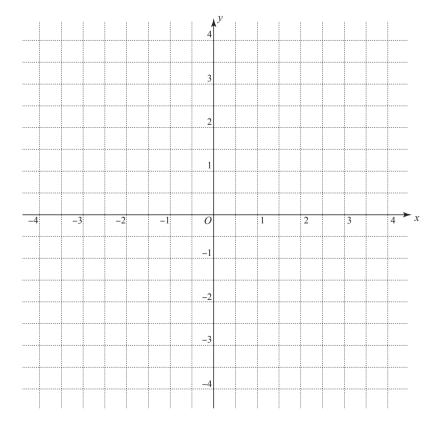
b)
$$\lim_{x \to 1} \frac{1}{1 + \frac{x}{1 - x}} =$$

- [15] 関数 $f(x) = (3x+2)^2$ について、以下の問いに答えよ.
 - a) x = -1 から x = -1 + h まで変化したときの f(x) の平均変化率をなるべく簡単な形で表せ.

b) f(x) の x = -1 における微分係数 f'(-1) を a) で求めた平均変化率 の極限として求めよ.

$$f'(-1) =$$

- **16** $f(x) = -\frac{1}{2}x^3 \frac{1}{2}x^2 + \frac{5}{2}x + 1$ とする. 以下の問いに答えよ.
 - a) x が -1 から 1 まで変化したときの平均変化率を求めよ.
 - b) f(x) の導関数を求めよ. (定義に従って計算する必要はない.) f'(x) =


- c) f'(x) = 0 となる x を求めよ.
- d) f'(x) > 0 となる x の範囲を求めよ.
- e) f(x) の増減表を完成させ、f(x) の極大値および極小値を求めよ.

x	
f'(x)	
f(x)	

f) f(-4), f(-3), f(-2), f(-1), f(0), f(1), f(2), f(3) をそれぞれ求めよ.

$$f(-4) = f(0) =$$
 $f(-3) = f(1) =$
 $f(-2) = f(2) =$
 $f(-1) = f(3) =$

g) ここまでの結果を反映させ、y = f(x) のグラフと、(2, f(2)) における接線をのグラフをなるべく丁寧に描け.

【解答用紙が足らなければこの部分も使用して下さい】