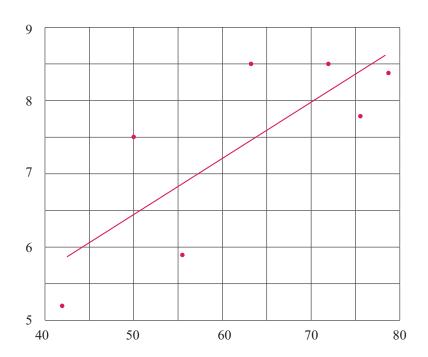
1 ある自動車が一定の速度で走行中に急ブレーキをかけたとき、停止するまでの距離がどれくらいかを 調べたところ、下のようなデータがえられた.

X:速度(km/h)	42	50	56	64	73	76	80
Y : 停止距離 (m)	5.2	7.5	5.9	8.5	8.5	7.8	8.4

X	Y	U = X - 60	V = Y - 7	U^2	V^2	UV
42	5.2	-18	-1.8	324	3.24	32.4
50	7.5	-10	0.5	100	0.25	-5
56	5.9	-4	-1.1	16	1.21	4.4
64	8.5	4	1.5	16	2.25	6
73	8.5	13	1.5	169	2.25	19.5
76	7.8	16	0.8	256	0.64	12.8
80	8.4	20	1.4	400	1.96	28
	和	21	2.8	1281	11.8	98.1
	平均	3	0.4	183	1.686	14.01


a) X, Y の分散 V(X), V(Y), $X \succeq Y$ の共分散 Cov(X,Y) をそれぞれ求めよ.

$$V(X) = V(U) = E(U^2) - E(U)^2 = 174$$

 $V(Y) = V(V) = E(V^2) - E(V)^2 = 1.53$
 $Cov(X, Y) = Cov(U, U) = E(UV) - E(U)E(V) = 12.81$

b) $X \subset Y$ の間の相関係数を求めよ.

$$r = \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)} = \frac{12.81}{\sqrt{174}\sqrt{1.53}} = 0.784$$

c)	X	ـــل	Y	の散布図	(相関図)	を描け

d) 回帰直線 Y = a + bX を求めて相関図の中に図示せよ.

回帰直線を
$$Y=a+bX$$
 としたとき, $b=\frac{\mathrm{Cov}(X,Y)}{V(X)}$, $a=E(Y)-bE(X)$ だから
$$b=0.074,\quad a=2.76.$$

したがって、回帰直線は

$$Y = 2.76 + 0.074X$$

e) この自動車が5m以内で停止できるようにするには、時速何km以下で走行しなければならないか.

Y=2.76+0.074X<5 を C について解くと、 X<30.41. したがって、30.41 km 以下で走行しなければならない。

② ある授業の期末試験成績と試験前1週間の勉強時間について調査を行ったとところ次のような結果を 得た.

X: 勉強時間 (時間)	20	18	11	7	12	15
Y: 期末試験成績 (点)	95	88	50	30	62	74

a) 勉強時間 X と試験 Y の成績の間の相関係数を求めよ.

前問と同様にして計算すると

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 96.42$$

$$V(X) = E(X^{2}) - E(X)^{2} = 19.14$$

$$V(Y) = E(Y^{2}) - E(Y)^{2} = 492.58$$

$$r = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)} = 0.99$$

b) 回帰直線 Y = a + bX を求めよ.

$$\begin{cases} b = \frac{\text{Cov}(X, Y)}{V(X)} = 5.04 \\ a = E(Y) - bE(X) = -3.18 \end{cases} \quad \text{\sharp D, $Y = -3.18 + 5.04$}$$

c) 80 点以上を A 評価とするとき、 A をとるには最低何時間勉強しなければならないか.

 $Y = -3.18 + 5.04X \ge 80$ を解いて、 X > 16.5. したがって、 16.5 時間以上勉強しなければならない.