5 © Quadratic functions

Student ID No.								Name			
1	9	F	1	1							

1] For each of the following parabolas, find the vertex.
a) $y=-2 x^{2}+8 x-5$
b) $y=3 x^{2}+2 x+1$
c) $y=4-2 x+\frac{1}{2} x^{2}$

2] For each of the following functions, find the maximum and minimum values when x varies within the domain indicated in (). Also, find the value of x at which the function attains its maximum and minimum.
a) $y=-x^{2}-2 x-5 \quad(-2 \leqq x \leqq 2)$
b) $y=2 x^{2}+3 x-1 \quad(-1 \leqq x \leqq 2)$

3 Solve the following equations over the complex numbers.
a) $2 x^{2}+3 x-1=0$
b) $3 x^{2}-5 x+9=0$
c) $x^{2}-2 x+2=0$
d) $4 x(x+5)=-25$
e) $\frac{x^{2}}{2}+\frac{2 x}{3}+\frac{1}{3}=0$
4. Solve the following inequalities.
a) $2 x^{2}+x-6>0$
b) $2 x^{2}-3 x-2 \leqq 0$
c) $2\left(x^{2}-x\right)<3(x+1)$
d) $x^{2}+x-1<0$
e) $4 x^{2}-4 x+1>0$
f) $2 x^{2}-3 x+2<0$
5. There is a rectangle whose vertical length is 1 cm longer than the horizontal length. When the area is $21 \mathrm{~cm}^{2}$, what is the length of the vertical side and the horizontal side, respectively.

6] A rocket is launched in the air. Its height, in meters above sea level, as a function of time, in seconds, is given by $h(t)=$ $-4.9 t^{2}+147 t-602.5$. Find the maximum height the rocket attains.

