1] For the right triangle in the figure on the right, find the sine, cosine, and tangent of the angle α
a) $\sin \alpha=$
b) $\cos \alpha=$
c) $\tan \alpha=$

2 Referring to the figure on the right, express the following expressions in terms of $\sin \theta, \cos \theta, \tan \theta$.
a) $\sin \left(180^{\circ}-\theta\right)=$
b) $\cos \left(180^{\circ}-\theta\right)=$
c) $\tan \left(180^{\circ}-\theta\right)=$

3) Complete the following table.

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \theta$									
$\cos \theta$									
$\tan \theta$									

4. For the right triangle $\triangle \mathrm{ABC}$ in the figure on the right, if we set the coordinate axes as shown in the figure on the right, the coordinates of the three vertices are $\mathrm{A}(0,0), \mathrm{B}(c, 0)$, $\mathrm{C}(b \cos A, b \sin A)$, respectively. Let a be the length of the op posite side of A, etc. Then, the length of the side BC equals a^{2}. Using the formula that the distance d between to points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is given by $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$, prove the Law of Cosines.

5 As shown in the right figure, to find the distance between two points A and B across the pond, we measured PA, PB, and \angle APB and found

$$
\mathrm{PA}=150 \mathrm{~m}, \quad \mathrm{~PB}=90 \mathrm{~m}, \quad \angle \mathrm{APB}=120^{\circ} .
$$

Find the distance between A and B .

6) Two points A and B are 2 km apart. If you look at two points C and D in the other side of the river from A, and from B, the angles are as follows

$$
\begin{array}{ll}
\angle \mathrm{BAC}=105^{\circ}, & \angle \mathrm{BAD}=45^{\circ}, \\
\angle \mathrm{ABC}=30^{\circ}, & \angle \mathrm{ABD}=90^{\circ}
\end{array}
$$

a) Find the distance between A and C , and between A and D . [Hint : Use the law of sines to $\triangle \mathrm{ABC} . \triangle \mathrm{ABD}$ is a right traingle.]

b) Find the distance between C and D . [Hint : Use the law of cosine to $\triangle \mathrm{CAD}$.]
a) $12^{\circ}=$
b) $15^{\circ}=$
c) $36^{\circ}=$
d) $45^{\circ}=$
e) $90^{\circ}=$
f) $120^{\circ}=$
g) $135^{\circ}=$
h) $150^{\circ}=$We want to prove the addition formula by referring to the figure on the right.
a) Use the law of cosines to $\triangle \mathrm{OPQ}$ to express PQ^{2} in terms of $\cos (\alpha-\beta)$.

9) Referring to the figure on the right, express the following expressions in terms of $\sin \theta, \cos \theta, \tan \theta$.
a) $\sin (-\theta)=$
b) $\cos (-\theta)=$
c) $\tan (-\theta)=$
d) $\sin (\pi+\theta)=$

e) $\cos (\pi+\theta)=$
a) $\frac{\pi}{10}=$
b) $\frac{\pi}{5}=$
c) $\frac{2 \pi}{3}=$
d) $\frac{5 \pi}{12}=$
e) $\frac{5 \pi}{4}=$
f) $\frac{3 \pi}{2}=$
g) $\frac{7 \pi}{4}=$
h) $3 \pi=$
f) $\tan (\pi+\theta)=$
c) Combine the results of a) and b), show the addition formula for $\cos (\alpha-\beta)$.

10 Find each of the following values
a) $\sin \frac{16 \pi}{3}=$
b) $\cos \left(-\frac{13 \pi}{6}\right)=$
c) $\tan \left(-\frac{11 \pi}{6}\right)=$

11 Solve each of the following equations for θ with $0 \leqq \theta<2 \pi$.
a) $\sin \theta=\frac{\sqrt{3}}{2}$
b) $\sqrt{2} \cos \theta=1$

12 Solve each of the following inequalites for θ with $0 \leqq \theta<2 \pi$.
a) $\cos \theta \leqq \frac{\sqrt{3}}{2}$
b) $\sin \theta>\frac{1}{2}$
d) Using the relation $\sin \theta=\cos \left(\frac{\pi}{2}-\theta\right)$, show the addition formula for $\sin (\alpha+\beta)$. $\left[\right.$ Hint : $\left.\cos \left(\frac{\pi}{2}-(\alpha+\beta)\right)=\cos \left(\left(\frac{\pi}{2}-\alpha\right)-\beta\right)\right)$.]

14 Solve each of the following equations for θ with $0 \leqq x<2 \pi$.
a) $\sin 2 x=\cos x$
b) $\cos 2 x+3 \cos x-1=0$

