1 Factoring and dividing polynomial	ls Mathematics— Spring 2019	1 9 F	ID No. Name
1 Factor the following polynomials.		c)	d)
a) $3ab - 6ac =$	b) $2a^2b - ab^2 =$	$2x^2 - 1)x^3 - 3x^2 + 4$	$x^{2} + ax - a^{2} \overline{)x^{3} - ax^{2} - 3a^{2}x}$
c) $x^2 - x =$	d) $(a+b)x - (a+b)y =$		
e) $x^2 + x - 6 =$	f) $x^2 - 7x + 10 =$		
g) $3x^2 - 18x + 27 =$	h) $x^2 - 11xy + 24y^2 =$		
i) $25x^2 - 4 =$	j) $x^3 + 8 =$	Quotient =	Quotient =
k) $x^4 + x =$	1) $3x^2 - 5x - 2 =$	Remainder =	Remainder =
		3 Consider the polynomial $f(x) = x^3 - 3x + 1$.	
2 Using long division, find the quotient and the remainder. (Here, <i>a</i> is a constant.)		a) Divide $f(x)$ by $x - 2$, and find the quotient and the remainder.	
a) $x-2\overline{)x^3-2x^2+4x-8}$	b) $x^2 - 3x + 2\overline{)x^3} - 9x + 8$	$x-2)x^3 - 3x+1$	

b) Compute the value f(2), and show that it agrees with the result of a).

Quotient =Quotient =Remainder =Remainder =

4 a) Using the remainder theorem, find the remainder when $f(x) = x^3 - 3x^2 + 4$ is divided by each of the following.

1) x-1 2) x-2

3) x + 1 4) x + 2

b) Which of x - 1, x - 2, x + 1, and x + 2 are the factors of $x^3 - 3x^2 + 4$.

c) Factor the polynomial $x^3 - 3x^2 + 4$.

6 Among the dividend, the divisor, the quotient, and the remainder, there is a relation

 $(Dividend) = (Divisor) \times (Quotient) + (Remainder)$

Express it in the fractional form, we can express it

$$\frac{\text{(Dividend)}}{\text{(Divisor)}} = (\text{Quotient}) + \frac{\text{(Remainder)}}{\text{(Divisor)}}$$

For example, if we divide 17 by 7, the quotient is 2, and the remainder is 3. Thus, we have $\frac{17}{7} = 2 + \frac{3}{7}$. Similarly, if we divide $2x^2 - 5x + 1$ by x - 2, then the quotient is 2x - 1, and the remainder is -1. Thus, we can write $\frac{2x^2 - 5x + 1}{x - 2} = 2x - 1 + \frac{-1}{x - 2}$. In other word, a fraction of polynomials can be expressed by the sum of polynomials and a fraction whose numerator has a degree lower than its denominator.

Express the following fractions of polynomials can be expressed by the sum of polynomials and a fraction whose numerator has a degree lower than its denominator.

a)
$$\frac{5x-3}{x-2} =$$

5 Let $P(x) = x^3 - x^2 - 5x - 3$.

a) Find the value P(-1).

b) Factor P(x).

b)
$$\frac{2x^2 - x + 3}{2x + 1} =$$