Quotient $=$

Remainder $=$

Quotient =
Remainder $=$

1] Factor the following polynomials.
a) $3 a b-6 a c=$
b) $2 a^{2} b-a b^{2}=$
c) $x^{2}-x=$
d) $(a+b) x-(a+b) y=$
e) $x^{2}+x-6=$
f) $x^{2}-7 x+10=$
g) $3 x^{2}-18 x+27=$
h) $x^{2}-11 x y+24 y^{2}=$
i) $25 x^{2}-4=$
j) $x^{3}+8=$
k) $x^{4}+x=$

1) $3 x^{2}-5 x-2=$

2] Using long division, find the quotient and the remainder. (Here, a is a constant.)
a)
$x - 2 \longdiv { x ^ { 3 } - 2 x ^ { 2 } + 4 x - 8 }$
b)

$$
x ^ { 2 } - 3 x + 2 \longdiv { x ^ { 3 } - 9 x + 8 }
$$

j) $x^{3}+8=$
c)
$2 x ^ { 2 } - 1 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 4 }$

Quotient =
Remainder $=$

3 Consider the polynomial $f(x)=x^{3}-3 x+1$.
a) Divide $f(x)$ by $x-2$, and find the quotient and the remainder.

$$
x - 2 \longdiv { x ^ { 3 } - 3 x + 1 }
$$

d)

$$
x ^ { 2 } + a x - a ^ { 2 } \longdiv { x ^ { 3 } - a x ^ { 2 } - 3 a ^ { 2 } x }
$$

Quotient $=$
Remainder $=$

b) Compute the value $f(2)$, and show that it agrees with the result of a).a) Using the remainder theorem, find the remainder when $f(x)=x^{3}-3 x^{2}+4$ is divided by each of the following.

1) $x-1$
2) $x-2$
3) $x+1$
4) $x+2$
b) Which of $x-1, x-2, x+1$, and $x+2$ are the factors of $x^{3}-3 x^{2}+4$.
c) Factor the polynomial $x^{3}-3 x^{2}+4$.

5] Let $P(x)=x^{3}-x^{2}-5 x-3$.
a) Find the value $P(-1)$.
b) $\frac{2 x^{2}-x+3}{2 x+1}=$
b) Factor $P(x)$.

