復習問題 略解

① f(x) が確率密度になるためには $\int_{-\infty}^{\infty} f(x) dx = 1$ とならなければならない. そこで,左辺を計算すると

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{1} cx(1-x) \, dx = c \int_{0}^{1} (x-x^{2}) \, dx = c \left[\frac{1}{2}x^{2} - \frac{1}{3}x^{3} \right]_{0}^{1} = \frac{c}{6}$$

となる. したがって c=6 でなければならない. このとき,

$$E(X) = \int_{-\infty}^{\infty} f(x) dx = \int_{0}^{1} x \cdot 6x(1-x) dx = 6 \int_{0}^{1} (x^{2} - x^{3}) dx = 6 \left[\frac{1}{3} x^{3} - \frac{1}{4} x^{4} \right]_{0}^{1} = \frac{6}{12} = \frac{1}{2}$$

$$V(X) = E(X^{2}) - E(X)^{2} = \int_{0}^{1} x^{2} \cdot 6x(1-x) dx - \left(\frac{1}{2} \right)^{2} = 6 \int_{0}^{1} (x^{3} - x^{4}) dx - \frac{1}{4}$$

$$= 6 \left[\frac{1}{4} x^{4} - \frac{1}{5} x^{5} \right]_{0}^{1} = \frac{3}{10} - \frac{1}{4} = \frac{1}{20}$$

2 1試合にかかる時間を X とおくと、この調査結果は X が正規分布 $N(198,24.0^2)$ に従っていることを意味する.ここで、時間の単位は分である. 求める確率は $P(X \le 150)$ である.今, $Z = \frac{X-\mu}{\sigma} = \frac{X-198}{24.0^2}$ とおくと, $Z \sim N(0,1)$ となり,

$$P(X \le 150) = P\left(Z \le \frac{150 - 198}{24.0}\right) = P(Z \le -2.00)$$

が成り立つ. この確率を標準正規分布表から求めと次のようになる

$$P(Z \le -2.00) = P(Z \ge 2.00) = 0.5 - P(0 \le Z \le 2.00) = 0.5 - 0.4772 = 0.0228 (= 2.3\%)$$

③ 標本平均 \overline{X} は母平均価格を μ ,母標準偏差を σ とするとき,正規分布 $N\left(\mu,\frac{\sigma^2}{n}\right)$ に従うので, $Z=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ は N(0,1) に従う.このとき,P(|Z|< k)<0.95 となるような k を正規分布表よりもとめると k=1.96 となる.そこで,|Z|<1.96 という条件を μ について解くと,

$$\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}$$

を得る. これに $\overline{X}=3.5$, $\sigma=0.2$, n=25 をあてはめると,

$$3.5 - 1.96 \frac{0.2}{5} < \mu < 3.5 + 1.96 \frac{0.2}{5}$$
 \$1) $3.4216 < \mu < 3.5784$

④ 考え方は前問と同様. 視聴率を p とすると,標準偏差 σ は $\sqrt{p(1-p)}$ となる(二項分布の n=1 の場合). 「標本視聴率」は $\overline{p}=\frac{160}{400}=0.40$ である. このとき, σ は $\sqrt{\overline{p}(1-\overline{p})}=\sqrt{0.4\times0.6}$ で代用し,

$$0.4 - 1.96 \frac{\sqrt{0.24}}{\sqrt{400}} & 0.352 < $p < 0.448$$$

「多」 帰無仮説 $H_0: \mu=198$,対立仮説 $H_1: \mu<198$ として,片側検定を行う. そこで, $\mu=198$ と仮定し,36 試合の標本平均 \overline{X} に対し, $Z=\frac{\overline{X}-\mu}{\sqrt{n}}=\frac{\overline{X}-198}{4.0}$ とおく.このとき, $Z\sim N(0,1)$ となるが,標準正規分布表を用いると,Z<-1.645 となる確率が 5% 未満であることがわかる.いま, $\overline{X}=190$ とすると Z=-2.0<-1.645 となるので,このような確率は 5% 未満であり,「滅多に起きない」と考えられ,帰無仮説 H_0 は棄却される.これより,対立仮説 H_1 が採択され,「方策の効果があり,平均試合時間は短縮した」と結論づけられる.

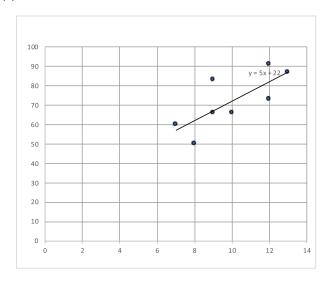
⑥ 帰無仮説 $H_0: \mu=22.0$ 、対立仮説 $H_1: \mu<22.0$ として、片側検定を行う。 前問と同様にして、 $Z=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\overline{X}-22.0}{\frac{20}{7}}$ とおき、 $\overline{X}=20.7$ のときの Z の値を計算すると Z=-4.55<-1.65 となる。 したがって H_0 は棄却され、このグループの学生は全国平均と比べて痩せているといえる。

 $oxed{7}$ 検定の枠組みは前 2 問と同様であるが,問題 4 のように σ として $\sqrt{p(1-p)}$ を用いることだけが異なる. $Z=rac{ar{p}-0.4}{\sqrt{0.4(1-0.4)}}$ に対し, $ar{p}=rac{216}{600}$ とおいて計算すると,Z=-2.0 となるので,この問題でも H_0 は棄却され,C 大生の視聴率は全国平均と比べて低かったといえる.

8

X	Υ	U=X-10	V=X=70	U^2	V^2	UV
7	60	-3	-10	9	100	30
8	50	-2	-20	4	400	40
9	66	-1	-4	1	16	4
9	83	-1	13	1	169	-13
10	66	0	-4	0	16	0
12	73	2	3	4	9	6
12	91	2	21	4	441	42
13	87	3	17	9	289	51
	和	0	16	32	1440	160
	平均	0	2	4	180	20

 $\begin{aligned} & \text{Cov}(X,Y) = \text{E}(\text{UV}) - \text{E}(\text{U}) \text{E}(\text{V}) = \\ & \text{V}(X) = \text{E}(\text{U}^2) - \text{E}(\text{U})^2 = \\ & \text{V}(Y) = \text{E}(\text{V}^2) - \text{E}(\text{V})^2 = \\ & \text{r} = \text{Cov}(X,Y) / (\sigma(X)\sigma(Y)) = \\ & \text{b} = \text{Cov}(X,Y) / \text{V}(X) = \\ & \text{a} = \text{E}(Y) - \text{b} \, \text{E}(X) = \end{aligned} \qquad \begin{aligned} & 20.0 \\ & \text{176.0} \\ & \text{0.754} \\ & \text{5.0} \end{aligned}$



- a) r = 0.754
- b) Y = 22 + 5X
- c) 80 > 22 + 5X を解いて, X > 11.6 (時間)