1 行列 P, Q, R, S を次のようにおく，これらの組み合わせのうち，積が定義できる場合すべてについ て，その積を計算せよ。

$$
P=\left(\begin{array}{ccc}
-2 & 1 & -1
\end{array}\right), \quad Q=\left(\begin{array}{rr}
1 & 1 \\
2 & -1 \\
-1 & 2
\end{array}\right), \quad R=\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right), \quad S=\left(\begin{array}{rrr}
3 & -2 & 1 \\
-2 & 1 & -1
\end{array}\right)
$$

\qquad

2 Initially，three firms A，B，and C（numbered 1，2，and 3）share the market for a certain commodity． Firm A has 20% of the market，B has 60% ，and C has 20% ．In the course of the next year，the following changes occur：

$$
\left\{\begin{array}{l}
\text { A keeps } 85 \% \text { of its customers, while losing } 5 \% \text { to B, and } 10 \% \text { to C } \\
\text { B keeps } 55 \% \text { of its customers, while losing } 10 \% \text { to A, and } 35 \% \text { to C } \\
\text { C keeps } 85 \% \text { of its customers, while losing } 10 \% \text { to A, and } 5 \% \text { to B }
\end{array}\right.
$$

We can represent market shares of the three firms by means of a market share vector，defined as a column vectors \vec{s} whose components are all nonnegative and sum to 1 ．Define the matrix T and the initial market share vector \vec{s} by

$$
T=\left(\begin{array}{ccc}
0.85 & 0.10 & 0.10 \\
0.05 & 0.55 & 0.05 \\
0.10 & 0.35 & 0.85
\end{array}\right) \quad \text { and } \quad \vec{s}=\left(\begin{array}{c}
0.2 \\
0.6 \\
0.2
\end{array}\right)
$$

Notice that $t_{i j}$ is the percentage of j＇s customers who become i＇s coustomers in the next period．So，T is called the transition matix．
a）Compute the vectot $T \vec{s}$ ．
b）Show that it is also a market share vector．
c）What is the interpretation of $T(T \vec{s}), T(T(T \vec{s})), \ldots$ ？

3）a）$A=\left(\begin{array}{rrr}1 & 1 & -3 \\ 1 & -3 & 1 \\ -3 & 1 & 1\end{array}\right)$ の逆行列 A^{-1} を求めよ．
b）$A^{-1} A, A A^{-1}$ がともに単位行列となることを確かめよ．
c）次の連立一次方程式の解を a）の結果を用いて求めよ．

$$
\left\{\begin{aligned}
& x+y-3 z= 3 \\
& x-3 y+z=-4 \\
&-3 x+y+z=1
\end{aligned}\right.
$$

