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1. Introduction
Let E be an elliptic curve over a number field k. By the Mordell-Weil

theorem the group E(K) of K-rational points on E, where K/k is a finite
extension of k, is a finitely generated abelian group. We fix E/k once
and for all, and we study the behavior of the rank of the group E(K) as
K varies through a certain family. We are particularly interested in the
family Fk(G) of all Galois extensions K/k whose Galois group Gal(K/k)
is isomorphic to a prescribed finite group G. In this article we focus on
the case G = Z/4Z.

One case that has been well studied is the case where G = Z/2Z. If an
elliptic curve E/k is given by the Weierstrass equation y2 = x3+Ax+B,
and d is a nonzero element of k, the quadratic twist of E by d, denoted
by Ed, is given by the equation dy2 = x3 + Ax + B. Since we have the
relation rankE(k(

√
d)) = rankE(k)+rankEd(k), studying the behavior

of the rank of E(k(
√

d)), as k(
√

d) varies through Fk(Z/2Z), is equivalent
to studying the family {Ed(k) | d ∈ k×/(k×)2}. In this case it is very
easy to find values of d such that rankEd(k) is positive. Indeed, take
any integer m in k, and write m3 + Am + B = dl2, then for almost all
m, the point (m, l) ∈ Ed(k) is of infinite order.
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If k is the field of rational numbers Q, our problem is conjecturally
equivalent to the vanishing of the quadratic twists of the L-function of
E (see [5] for more detail). Let L(E, s) =

∑∞
n=1 ann−s be the L-function

of E/Q, and let χ : Gal(Q̄/Q) → C× be a Dirichlet character of order 2.
The twist of L(E, s) by χ is given by L(E, s, χ) =

∑∞
n=1 χ(n)ann−s. In

this case we have a functional equation that relates L(E, 2 − s, χ) and
L(E, s, χ), and this functional equation forces L(E, 1, χ) to vanish for at
least one half of quadratic characters.

When χ runs through Dirichlet characters of order n, there is no a
priori reason that the twist L(E, s, χ) vanishes for infinitely many χ’s.
However, numerical experiments seem to suggest that L(E, s, χ) vanishes
quite often when the order of the character is small (see [2]).

If n is greater than 2, we do not dispose of an obvious method to find
a point on E defined over some cyclic extension of degree n. It turns out
that we have a higher dimensional analogue of Ed that is a variety over
k whose k-rational point corresponds to a point on E defined over some
cyclic extension K/k of degree n. When G = Z/3Z, Z/4Z or Z/6Z,
this variety is a surface which belongs to the class of surfaces called
generalized Kummer surfaces. Earlier, we obtained some results for the
case G = Z/3Z by studying this surface (see [4]). When G = Z/4Z, it
turns out that we have a stronger result:

Theorem 1.1. Let E be an elliptic curve over a number field k. Then
there exist infinitely many cyclic quartic extensions K/k such that
rankE(K) is strictly greater than rankE(K2), where K2 is the unique
intermediate quadratic extension of k in K.

Corollary 1.2. Let Fk,G =
⋃

K∈Fk(G) K be the compositum of all the
Galois extensions of k whose Galois group is isomorphic to G. Then the
quotient group E(Fk,Z/4Z)/E(Fk,Z/2Z) is not finitely generated.

To prove our theorem we find a k-rational curve contained in the
generalized Kummer surface in question, and write down its equation
explicitly.

The author would like to thank Professor Hershy Kisilevsky and
Dr. Jack Fearnley for useful conversations. He would also thank Profes-
sors Katsuya Miyake and Ki-ichiro Hashimoto for giving me an opportu-
nity to present an earlier version of this paper at the conference “Galois
theory and Modular forms” at the Tokyo Metropolitan University.
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2. A generalized Kummer surface
Let E be an elliptic curve over k. Consider the automorphism ρ of

E × E given by

ρ : E × E −→ E × E
(P, Q) �−→ (Q,−P ).

It is easy to see that ρ is of order 4, and ρ2 is the multiplication-by-(−1)
map. Let X be the quotient of E × E by the group 〈ρ〉 generated by
ρ, and let X̃ be its minimal non-singular model obtained by blowing-
ups. X̃ is a generalized Kummer surface (cf. Katsura [3], Bertin [1]). In
particular X̃ is a K3 surface.

The set of fixed points of ρ consists of the four points of the form
(T, T ), where T is a 2-torsion point. The set of fixed points of ρ2 consists
of the sixteen points of the form (T, S), where T and S are 2-torsion
points. Thus ρ acts freely away from these sixteen points. We denote by
X◦ the open set of X obtained by removing the image of these sixteen
points in X.

Lemma 2.1. If the equivalence classes [P, Q] is in the set of k-rational
points X◦(k), then (P, Q) satisfies one of the following :

(1) P and Q are defined over k.

(2) P and Q are both defined over some quadratic extension k(
√

d)/k.
If τ ∈ Gal(k(

√
d)/k) is the generator, then we have τ(P ) = −P

and τ(Q) = −Q.

(3) P and Q are both defined over some cyclic quartic extension K/k.
If we choose a suitable generator σ ∈ Gal(K/k), then we have
σ(P ) = Q and σ(Q) = −P .

Proof. Let P and Q be points on E(k̄), and suppose that [P, Q] ∈ X◦(k).
If σ is an element of Gal(k̄/k), then (σ(P ), σ(Q)) is one of the follow-
ing four pairs: (P, Q), ρ(P, Q) = (Q,−P ), ρ2(P, Q) = (−P,−Q) or
ρ3(P, Q) = (−Q, P ). Note that these four pairs are distinct since [P, Q]
is in X◦. We can therefore define a map ψ : Gal(k̄/k) → 〈ρ〉. Since
the automorphism ρ is defined over k, it commutes with any element of
Gal(k̄/k). Thus, if σ1(P, Q) = ρi(P, Q) and σ2(P, Q) = ρj(P, Q), then
σ1

(
σ2(P, Q)

)
= σ1

(
ρj(P, Q)

)
= ρi

(
ρj(P, Q)

)
= ρi+j(P, Q). This shows

that the map ψ is a homomorphism.
Let K be the Galois extension of k corresponding to kerψ via Ga-

lois theory. Then Gal(K/k) is isomorphism to a subgroup of 〈ρ〉. If
Gal(K/k) = {id}, then K = k, and both P and Q are defined over k.
This is the case (1).
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If Gal(K/k) � 〈ρ2〉, then K is a quadratic extension of k. Let τ ∈
Gal(k̄/k) be an element whose image in Gal(K/k) generates Gal(K/k).
Then ψ(τ) = 〈ρ2〉. This shows that τ(P, Q) = ρ2(P, Q) = (−P,−Q).
This is the case (2).

If Gal(K/k) � 〈ρ〉, then K is a cyclic quartic extension. Let σ ∈
Gal(k̄/k) be an element whose image in Gal(K/k) maps to ρ by ψ.
Then we have σ(P, Q) = (Q,−P ). This implies that Q = σ(P ) and
σ2(P ) = σ(Q) = −P . This is the case (3).

Conversely, if we have a point P defined over some cyclic quartic
extension of k, we have the following.

Lemma 2.2. Let P be a point whose field of definition is a cyclic quartic
extension K/k. Let σ be a generator of Gal(K/k). Define P ′ = P −
σ2(P ). Then [P ′, σ(P ′)] is in X(k). Furthermore, if E does not have a
k-rational 2-torsion point, then [P ′, σ(P ′)] is in X◦(k).

Proof. First, note that P ′ is not O. Otherwise, we have P = σ2(P ),
which is a contradiction to the fact that the field of definition of P ′ is
K. We see easily that σ2(P ′) = −P ′, which implies that σ(P ′, σ(P ′)) =
(σ(P ′), σ2(P ′)) = (σ(P ′),−P ′) = ρ(P ′, σ(P ′)). This shows that [P ′, σ(P ′)]
is in X(k).

Suppose that [P ′, σ(P ′)] is not in X◦(k). Then P ′ is a 2-torsion point
of E. Moreover, P ′ is defined over the intermediate quadratic extension
K2 between K and k, since we have σ2(P ′) = −P ′ = P ′. Then we see
that either P ′ itself or P ′+σ(P ′) is a k-rational 2-torsion point of E.

3. Equation of the surface X

In this section we will write down an equation of X in order to study
X in detail. We first fix an equation of E:

E : y2 = x3 + Ax + B. (1)

For simplicity of exposition, we assume AB �= 0 throughout. Let k(E ×
E) be the function field of E × E. Then k(E × E) may be written as
k(x1, x2, y1, y2), where (x1, y1) and (x2, y2) both satisfy the equation (1).
The automorphism induced by ρ on k(E×E), also denoted by ρ, satisfies

ρ(x1) = x2, ρ(x2) = x1, ρ(y1) = y2, ρ(y2) = −y1.

Let Y be the quotient surface E ×E/〈ρ2〉 = E ×E/{±1}, which is a
singular model of the Kummer surface associated with E × E.
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Lemma 3.1. The function field k(Y ) of the quotient surface Y is the
subfield of k(E × E) generated by x1, x2 and y = y1/y2, which satisfy
the equation

(x3
2 + Ax2 + B)y2 = x3

1 + Ax1 + B. (2)

Furthermore, the automorphism ρ acts on k(Y ) by

ρ(x1) = x2, ρ(x2) = x1, ρ(y) = −1
y
.

Proof. It is easy to see that the elements x1, x2 and y = y1/y2 are fixed
by the automorphism ρ2 and thus belong to k(Y ). Also, it is easy to see
that x1, x2 and y satisfy the equation (2). We thus need to show that
these three elements generate k(Y ). To see this it suffices to show that
the degree of extension [k(E × E) : k(Y )] is 2. The element y1 is a root
of the quadratic equation in T with coefficients in k(Y ):

T 2 − x3
1 − Ax1 − B = 0.

Thus, we have [k(E × E) : k(Y )] ≤ 2. The fact that y1 and y2 are
independent in k(E × E) implies that k(E × E) �= k(Y ). Thus, we
conclude [k(E × E) : k(Y )] = 2. The action of ρ on y is given by

ρ(y) =
ρ(y1)
ρ(y2)

=
y2

−y1
= −1

y
.

Proposition 3.2. The function field k(X) of the quotient surface X =
E × E/〈ρ〉 is the subfield of k(E × E) generated by

ξ = x1 + x2, η = x2y − x1

y
, t = y − 1

y
,

which satisfy the equation

−tξ3 + 3ξ2η + η3 + A
(
t2 + 4

)
η + Bt

(
t2 + 4

)
= 0. (3)

Proof. First, we can easily verify that the elements ξ, η and t are fixed
by the automorphism ρ, and thus belong to k(X). It is easy to see that
k(ξ, η, y) = k(x1, x2, y) = k(Y ). This shows that k(Y ) is a quadratic
extension of k(ξ, η, t) obtained by adding y satisfying y2 − ty − 1 = 0.

To obtain a relation among ξ, η and t, we first express the equation
(2) in terms of ξ, η and y, and then we eliminate y using the relation
y2 − ty − 1 = 0.



70

4. Rational curves on the surface X

In this section we show that there exist infinitely many parametrized
curves defined over k on the surface X. This allows us to show that
there are infinitely many different cyclic quartic extensions such that
the Mordell-Weil group over it increases from that over k.

Looking at the equation (2), we notice that the surface Y = E ×
E/{±1} can be regarded as a family of cubic curves in the x1x2-plane
parametrized by y. The projective model of this plane curve defined over
k(y) intersects with the line at infinity at three points. These are not
defined over k(y), but one of them is defined over the extension k( 3

√
y).

Writing u = 3
√

y, we obtain a plane cubic curve defined over k(u) given
by

(x3
2 + Ax2 + B)u6 = x3

1 + Ax1 + B (4)

with a k(u)-rational point at infinity. The tangent line at this point
intersects with the third point P (see Figure 1), which is again k(u)-
rational.

y2/3x2=x1

α1 α2 α3

α1

α2

α3

(y2/3 :1:0)

P

x1

x2

Figure 1. Plane cubic curve (x3
2 + Ax2 + B)y2 = x3

1 + Ax1 + B.
(Here, α1,α2 and α3 are the three roots of x3 + Ax + B = 0.)

A simple calculation shows that the coordinates of P are given by

(x1, x2) =
(−B(u4 + u2 + 1)

A(u2 + 1)
,
−B(u4 + u2 + 1)

Au2(u2 + 1)

)
. (5)

In other words the triple cover Y ′ of Y defined by the equation (4)
has a k-rational parametrized curve. The automorphism of ρ on Y can
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be lifted to the automorphism of Y ′ by defining

ρ′ : (x1, x2, u) �→ (x2, x1,−1/u).

It is easy to see that the parametrized curve obtained above is stable
under the action of ρ. We have a commutative diagram:

Y ′ → Y

Y ′

ρ′

↓
→ Y

ρ

↓

Let X ′ be the quotient Y ′/〈ρ〉. The diagram above induce the diagram:

Y ′ → Y

X ′
↓

→ X
↓

Proposition 4.1. The function field of the quotient X ′ = Y ′/〈ρ〉 is the
subfield of k(E × E) generated by

ξ = x1 + x2, η = x2u
3 − x1

u3
, s = u − 1

u
,

which satisfy the equation

− s(s2 + 3)ξ3 + 3ξ2η + η3

+ A(s2 + 1)2(s2 + 4)η + Bs(s2 + 1)2(s2 + 3)(s2 + 4) = 0. (6)

The covering map X ′ → X is given by (ξ, η, s) �→ (ξ, η, s3 + 3s).

Proof. The proof goes similarly to that of Proposition 3.2. The last part
is a consequence of the simple calculation

s3 =
(
u − 1

u

)3
= u3 − 1

u3
− 3

(
u − 1

u

)
= y − 1

y
− 3s = t − 3s.

We think of the equation (6) as that of a cubic curve in ξη-plane over
the function field k(s). This curve has two rational points, one at infinity
and the other coming from P on Y . Calculations show that the latter
has coordinates

(ξ, η) =
(−B(s2 + 3)

A
,
−Bs(s2 + 3)

A

)
.
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Choosing the point at infinity (1 : s : 0) as the origin, we regard X ′ as
the elliptic curve over k(s).

Proposition 4.2. The equation (6) is transformed to the Weierstrass
form

Y 2 = X3 − 48A2(s2 + 4)2X

− 16(s2 + 4)3
(
(4A3 + 27B2)s2(s2 + 3)2 + 8A3

)
(7)

by the transformation

X =
4(s2 + 4)
(sξ − η)

(
As(s2 + 2)ξ + A(2s2 + 1)η + 3Bs(s2 + 1)(s2 + 3)

)
,

Y =
12s(s2 + 4)
(sξ − η)2

(
3B(s2 + 3)

(
s(s2 + 2)ξ2 − 2ξη − sη2

)
+ 2A(s2 + 1)2(s2 + 4)

(
Aη + Bs(s2 + 3)

))
.

The point (ξ, η) =
(
−B(s2 + 3)/A,−Bs(s2 + 3)/A

)
is transformed to

(X, Y ) =
(

4
A2

(
(A3 + 9B2)(s2 + 3)2 − A3

)
,

36B(s2 + 3)
A3

(
(A3 + 6B2)(s2 + 3)2 − A3

)
,

)
(8)

which is of infinite order.

Proof. Converting to the Weierstrass form is standard and straight for-
ward. The elliptic surface given by (7) has the following types of singular
fibers under the condition AB �= 0.

I∗0 at s2 + 4 = 0,

I2 at s(s2 + 3) = 0,

I1 at (4A3 + 27B2)s2(s2 + 3)2 + 16A3 = 0.

If the point given by (8) is a torsion point, its specialization at each
fiber is a torsion point of the same order. Since a fiber of type I∗0 is
isomorphic to Ga × (Z/2Z)2 as an algebraic group, its torsion points are
of order 2. Since the Y -coordinate of the point (8) is not 0, it is not a
point of order 2, and thus it is of infinite order.

A k(s)-rational point on the elliptic curve (7) is one-to-one correspon-
dence with a k(s)-rational point (ξ(s), η(s)) on the plane curve (6), which
in turn gives a parametrized curve (ξ(s), η(s), s3 +3s) on the surface X.
Since Proposition 4.2 gives us infinitely many k(s)-rational points on (7),
we have infinitely many k-rational parametrized curve on X.
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5. Points on E defined over cyclic quartic
extensions

We have seen that the surface X has a k-rationally parametrized curve

(ξ, η, t) =
(−B(s2 + 3)

A
,
−Bs(s2 + 3)

A
, s3 + 3s

)
(9)

with parameter s. This gives a point on E defined over a quartic exten-
sion of k(s).

Lemma 5.1. Let v be a root of the quadratic equation in T with k(u)-
coefficients:

A(u2 + 1)T 2 + A3Bu4(u2 + 1)2 + B3(u4 + u2 + 1)3 = 0.

Then k(v) is a cyclic quartic extension of k(s), and the elliptic curve E
has four k(v)-rational points

(x, y) =
(−B(u4 + u2 + 1)

A(u2 + 1)
,± v

A(u2 + 1)

)
,(−B(u4 + u2 + 1)

Au2(u2 + 1)
,± v

Au3(u2 + 1)

)
.

Proof. We have seen that the point on X given by (9) comes from the
point P on the Kummer surface Y . We obtain four points in the lemma
by taking the preimage of P in E × E. The arguments in §2 show that
the field of definition of these points, k(v), is a cyclic quartic extension
of k(s). This may be seen directly as v satisfies the following quartic
equation in T with k[s]-coefficients

A2(s2 + 4)T 4

+ AB(s2 + 4)(s4 + 3s2 + 1)
(
A3(s2 + 4) + B2(s2 + 3)3

)
T 2

+ B2
(
A3(s2 + 4) + B2(s2 + 3)3

)2 = 0. (10)

Proof of Theorem 1.1. First we show that the points obtained in Lem-
ma 5.1 are of infinite order. If we let

d(u) = −A3Bu4(u2 + 1)2 + B3(u4 + u2 + 1)3

A(u2 + 1)
,

then the points in Lemma 5.1 may be considered as k(u)-rational point
on the twisted curve

Ed(u) : d(u)y2 = x3 + Ax + B.
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If we regard this elliptic curve over k(u) as an elliptic surface over k,
then the only singular fibers it has are of Kodaira type I∗0. This implies
that the only possible torsion k(u)-rational points are points of order 2.
However, our points are clearly not of order 2 since the y-coordinates
are not 0.

Since k(v)/k(u)-trace of the k(v)-points in Lemma 5.1 are O, we see
that the intersection between the subgroup generated by these k(v)-
points and the group E(k(u)) is {O}. Thus we have rankE(k(v)) >
rankE(k(u)).

By specializing s to different values of k, we obtain infinitely many
points on E defined over the splitting field of (10). By Hilbert’s irre-
ducibility theorem these are cyclic quartic extensions for infinitely many
values of s. Also, by a theorem of Silverman [6] on the specialization of
a family of elliptic curves, points on an elliptic curve obtained by spe-
cializing a point of infinite order is once again of infinite order except
for a finite number of values. This completes the proof.

Proof of Corollary 1.2. Since points on E whose field of definition are
different quartic extensions are clearly independent, the assertion follows
immediate from the theorem.

Remark 5.2. The discriminant of the equation (10) is given by

16A6B6s4(s2 + 4)3(s4 + 5s2 + 5)4
(
A3(s2 + 4) + B2(s2 + 3)3

)6
.

6. Elliptic curve with 2-torsion
If the elliptic curve E in question has a 2-torsion point, then the

surface X has more k-rational curves on it. In this section we show
explicit results for the case where E has three k-rational 2-torsion points.
Other cases can be worked out similarly.

Let us fix the equation of E as

E : y2 = (x − c)(x − d)(x + c + d).

Then the equation (3) of X becomes

−tξ3 + 3ξ2η + η3 − (c2 + cd + d2)(t2 + 4)η + cd(c + d)t(t2 + 4) = 0.

We regard this as a cubic curve in the ξη-plane over k(t). We have
several obvious k(t)-rational points, for example,

P1 = (2c, ct), P2 = (2d, dt), P3 = (−2c − 2d,−ct − dt).
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These correspond to 2-torsion points on E × E. The tangent line at P1

intersects with the curve at Q = (−c, ct). This gives four points on E
given by(

− c

2
+

3ct

2
√

t2 + 4
,

√
3c

8

(
(c + 2d)2 − 9c2t2

t2 + 4

)(
1 − t√

t2 + 4

))
,(

− c

2
− 3ct

2
√

t2 + 4
,

√
3c

8

(
(c + 2d)2 − 9c2t2

t2 + 4

)(
1 +

t√
t2 + 4

))
.

These are defined over the cyclic quartic extension that is the splitting
field of the equation

T 4 + 3c(t2 + 4)
(
(2c + d)(c − d)t2 − (c + 2d)2

)
T 2

+ 9c2(t2 + 4)
(
(2c + d)(c − d)t2 − (c + 2d)2

)2 = 0.

By considering tangent lines at other points, we obtain more points
defined over similar cyclic quartic extensions.

Remark 6.1. Choosing P1 = (2c, ct) as the origin, the equation of X
may be converted to the Weierstrass form.

Y 2 = X3 − 48(c2 + cd + d2)(t2 + 4)X

+ 16(t2 + 4)3
(
(c − d)2(c + 2d)2(2c + d)2t2 + 8(c2 + cd + d2)

)3
.

The rank of the Mordell-Weil group of this elliptic curve over k(t) is 2
or 3 depending on whether or not E has complex multiplication. If E
does not have complex multiplication, then the Mordell-Weil group is
generated by the images of P2 and P3.
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Montréal, Montreal, QC, 123–133, 1990.



76

[6] J. H. Silverman, Heights and the specialization map for families of abelian vari-
eties, J. Reine Angew. Math. 342 (1983), 197–251.


