練習問題 4

1 3つに2次形式を次のように定義する.

$$F_1(X, Y, Z, W) = XZ - Y^2,$$

 $F_2(X, Y, Z, W) = XW - YZ,$
 $F_3(X, Y, Z, W) = YW - Z^2.$

S=k[U,V] と $B=k[X,Y,Z,W]/(F_1,F_2,F_3)$ を次数付環とし、L、C をそれぞれ、S、B で定義される射影曲線とする。また、 $\varphi:B\to A$ を

$$\varphi(X) = U^3$$
, $\varphi(Y) = U^2V$, $\varphi(Z) = UV^2$, $\varphi(W) = V^3$

で定義される環準同型とする.

- a) $L = D(U) \cup D(V)$, $C = D(X) \cup D(W)$ であることを示せ.
- b) φ により誘導される写像 $\mathfrak{O}_L(U)\cap \mathfrak{O}_L(V)\to \mathfrak{O}_C(X)\cap \mathfrak{O}_C(W)$ は環同型であることを示せ.
- c) $F_i=0$ で定義される 射影空間 ${\bf P}^3$ 内の曲面 Q_i を考える. $1\leq i < j \leq 3$ なる任意の i,j について. Q_i と Q_i の交わりは曲線 C ともう 1 つの直線をあわせたものであることを示せ.
- d) さらに一般に、任意の $\lambda=(\lambda_1:\lambda_2:\lambda_3)$ について、 $F_\lambda=\lambda_1F_1+\lambda_2F_2+\lambda_3F_3=0$ で曲面 Q_λ を定義する、このとき、任意の $\lambda\neq\mu$ について Q_λ と Q_μ の交わりは曲線 C と直線の合併であることを示せ、
- ② A = k[x, y, z] とし、A のイデアル I を $I = (x^2 y^3, y^2 z^3)$ と定義する。また、B = k[t] とする。さらに、環準同型 $\alpha: k[x, y, z] \rightarrow k[t]$ を $F(x, y, z) \mapsto F(t^9, t^6, t^4)$ で定義する。
- a) 任意の多項式 F(x, y, z) に対し、

$$F(x, y, z) \equiv a(z) + b(z)x + c(z)y + d(z)xy \mod I$$

をみたす $a(z), b(z), c(z), d(z) \in k[z]$ が存在することを示せ、これより、 $\operatorname{Ker} \alpha = I$ であることを示せ、

- b) I は A の素イデアルであることを示せ.
- 3 E &

$$X^{2} - XZ - YW = 0,$$
 $YZ - XW - ZW = 0.$

で定義される 射影空間 ${f P}^3$ 内の曲線とする.また,V を W=0 で定義される平面とする. このとき,写像 φ を

$$\varphi: \quad E \setminus \{(0:0:0:1)\} \quad \to \quad V \\ (X:Y:Z:W) \quad \mapsto \quad (X:Y:Z:0)$$

で定義する.

- a) φ を O=(0:0:0:1) にまで拡張し、拡張された写像 $\tilde{\varphi}$ が E から V への正則な射となるようにできるか、
- b) $\tilde{\varphi}$ は E から射影平面 \mathbf{P}^2 内で

$$Y^2Z = X^3 - XZ^2$$

により定義される曲線 C への同型写像となることを示せ.